
 SURFACE
 VEHICLE
 RECOMMENDED
 PRACTICE

(R) Recommended Practice for Pass-Thru Vehicle Programming

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”
SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.
Copyright © 2004 SAE International
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: custsvc@sae.org
SAE WEB ADDRESS: http://www.sae.org

 Issued 2002-02
 Revised 2004-12

 Superseding J2534 FEB2002

® J2534-1

REV.
DEC2004

Foreword

The use of reprogrammable memory technology in vehicle electronic control units (ECUs) has increased
in recent years, and is expected to continue in the future. Use of this technology has increased the
flexibility of being able to use a single ECU hardware part to be used in many different vehicle
configurations, with the only difference being the software and calibrations programmed into the unit.
Reprogramming of those ECUs in the service environment also allows for ease of field modification of
system operation and calibrations. Variations in reprogramming capability and the multiple tools
necessary to reprogram vehicles are a burden on aftermarket repair facilities that service different makes
of vehicles.

This document describes a standardized system for programming that includes a standard personal
computer (PC), standard interface to a software device driver, and an interface that connects between the
PC and a programmable ECU in a vehicle. The purpose of this system is to facilitate programming of
ECUs for all vehicle manufacturers using a single set of programming hardware. Programming software
from multiple vehicle manufacturers will be able to execute on this set of hardware to program their
unique ECUs.

The U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) have
been working with vehicle manufacturers to provide the aftermarket with increased capability to service
emission-related ECUs for all vehicles with a minimal investment in hardware needed to communicate
with the vehicles. Both agencies have issued regulations that will require standardized programming
tools to be used for all vehicle manufacturers. The Society of Automotive Engineers (SAE) developed
this Recommended Practice to satisfy the intent of the U.S. EPA and the California ARB.

SAE J2534-1 Revised DEC2004

- 2 -

TABLE OF CONTENTS
1. Scope ... 5

2. References... 5
2.1 Applicable Documents ... 5
2.1.1 SAE Publications.. 5
2.1.2 ISO Documents.. 6

3. Definitions... 6

4. Acronyms ... 6

5. Pass-Thru Concept .. 7

6. Pass-Thru System Requirements .. 8
6.1 PC Requirements... 8
6.2 Software Requirements and Assumptions... 8
6.3 Connection to PC ... 9
6.4 Connection to Vehicle .. 9
6.5 Communication Protocols .. 9
6.5.1 ISO 9141 .. 9
6.5.2 ISO 14230-4 (KWP2000) ... 10
6.5.3 SAE J1850 41.6 kbps PWM (Pulse Width Modulation) ... 10
6.5.4 SAE J1850 10.4 kbps VPW (Variable Pulse Width) .. 10
6.5.5 CAN.. 11
6.5.6 ISO 15765-4 (CAN).. 11
6.5.7 SAE J2610 DaimlerChrysler SCI ... 11
6.6 Simultaneous Communication on Multiple Protocols... 11
6.7 Programmable Power Supply .. 12
6.8 Pin Usage... 13
6.9 Data Buffering .. 14
6.10 Error Recovery ... 14
6.10.1 Device Not Connected ... 14
6.10.2 Bus Errors .. 14

7. Win32 Application Programming Interface .. 15
7.1 API Functions – Overview.. 15
7.2 API Functions - Detailed Information ... 15
7.2.1 PassThruOpen ... 15
7.2.1.1 C/C++ Prototype .. 15
7.2.1.2 Parameters... 16
7.2.1.3 Return Values .. 16
7.2.2 PassThruClose... 16
7.2.2.1 C/C++ Prototype .. 16
7.2.2.2 Parameters... 16
7.2.2.3 Return Values .. 17
7.2.3 PassThruConnect .. 17
7.2.3.1 C/C++ Prototype .. 17
7.2.3.2 Parameters... 17
7.2.3.3 Flag Values .. 18
7.2.3.4 Protocal ID Values ... 19

SAE J2534-1 Revised DEC2004

- 3 -

7.2.3.5 Return Values .. 20
7.2.4 PassThruDisconnect .. 20
7.2.4.1 C/C++ Prototype .. 20
7.2.4.2 Parameters... 21
7.2.4.3 Return Values .. 21
7.2.5 PassThruReadMsgs... 21
7.2.5.1 C/C++ Prototype .. 22
7.2.5.2 Parameters... 22
7.2.5.3 Return Values .. 23
7.2.6 PassThruWriteMsgs... 23
7.2.6.1 C/C++ Prototype .. 24
7.2.6.2 Parameters... 24
7.2.6.3 Return Values .. 25
7.2.7 PassThruStartPeriodicMsg .. 26
7.2.7.1 C/C++ Prototype .. 26
7.2.7.2 Parameters... 26
7.2.7.3 Return Values .. 27
7.2.8 PassThruStopPeriodicMsg .. 27
7.2.8.1 C/C++ Prototype .. 28
7.2.8.2 Parameters... 28
7.2.8.3 Return Values .. 28
7.2.9 PassThruStartMsgFilter ... 28
7.2.9.1 C/C++ Prototype .. 31
7.2.9.2 Parameters... 31
7.2.9.3 Filter Types .. 32
7.2.9.4 Return Values .. 33
7.2.10 PassThruStopMsgFIlter ... 33
7.2.10.1 C/C++ Prototype .. 33
7.2.10.2 Parameters... 34
7.2.10.3 Return Values .. 34
7.2.11 PassThruSetProgrammingVoltage .. 34
7.2.11.1 C/C++ Prototype .. 34
7.2.11.2 Parameters.. .35
7.2.11.3 Voltage Values ... 35
7.2.11.4 Return Values .. 35
7.2.12 PassThruReadVersion... 36
7.2.12.1 C/C++ Prototype .. 36
7.2.12.2 Parameters... 36
7.2.12.3 Return Values .. 37
7.2.13 PassThruGetLastError ... 37
7.2.13.1 C/C++ Prototype .. 37
7.2.13.2 Parameters... 37
7.2.13.3 Return Values .. 37
7.2.14 PassThruIoctl ... 38
7.2.14.1 C/C++ Prototype .. 38
7.2.14.2 Parameters... 38
7.2.14.3 Ioctl ID Values .. 39
7.2.14.4 Return Values .. 39
7.3 IOCTL Section.. 40
7.3.1 GET_CONFIG.. 41
7.3.2 SET_CONFIG .. 42

SAE J2534-1 Revised DEC2004

- 4 -

7.3.3 READ_VBATT.. 46
7.3.4 READ_PROG_VOLTAGE.. 46
7.3.5 FIVE_BAUD_INIT .. 47
7.3.6 FAST_INIT ... 47
7.3.7 CLEAR_TX_BUFFER .. 48
7.3.8 CLEAR_RX_BUFFER.. 48
7.3.9 CLEAR_PERIODIC_MSGS ... 49
7.3.10 CLEAR_MSG_FILTERS .. 49
7.3.11 CLEAR_FUNCT_MSG_LOOKUP_TABLE .. 49
7.3.12 ADD_TO_FUNCT_MSG_LOOKUP_TABLE ... 50
7.3.13 DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE ... 50

8. Message Structure ... 51
8.1 C/C++ Definition... 51
8.2 Elements .. 51
8.3 Message Data Formats.. 52
8.4 Format Checks for Messages Passed to the API .. 53
8.5 Conventions for Returning Messages from the API... 53
8.6 Conventions for Returning Indications from the API.. 53
8.7 Message Flag and Status Definitions .. 54
8.7.1 RxStatus... 54
8.7.2 RxStatus Bits for Messaging Status and Error Indication.. 55
8.7.3 TxFlags... 56

9. DLL Installation and Registry ... 57
9.1 Naming of Files .. 57
9.2 Win32 Registy .. 57
9.2.1 User Application Interaction with the Registry ... 59
9.2.2 Attaching to the DLL from an application... 60
9.2.2.1 Export Library Definition File.. 61

10. Return Value Error Codes.. 61

11. Notes .. 63
11.1 Marginal Indicia .. 63

Appendix A General ISO 15765-2 Flow Control Example .. 64
A.1 Flow Control Overview... 64
A.1.1 Examples Overview ... 65
A.2 Transmitting a Segmented Message ... 66
A.2.1 Conversation Setup.. 66
A.2.2 Data Transmission ... 67
A.2.3 Verification.. 68
A.3 Transmitting an Unsegmented Message ... 69
A.3.1 Data Transmission ... 70
A.3.2 Verification.. 70
A.4 Receiving a Segmented Message ... 70
A.4.1 Conversation Setup.. 70
A.4.2 Reception Notification .. 70
A.4.3 Data Reception .. 71
A.5 Receiving and Unsegmented Messages ... 72

SAE J2534-1 Revised DEC2004

- 5 -

1. Scope

This SAE Recommended Practice provides the framework to allow reprogramming software applications
from all vehicle manufacturers the flexibility to work with multiple vehicle data link interface tools from
multiple tool suppliers. This system enables each vehicle manufacturer to control the programming
sequence for electronic control units (ECUs) in their vehicles, but allows a single set of programming
hardware and vehicle interface to be used to program modules for all vehicle manufacturers.

This document does not limit the hardware possibilities for the connection between the PC used for the
software application and the tool (e.g., RS-232, RS-485, USB, Ethernet…). Tool suppliers are free to
choose the hardware interface appropriate for their tool. The goal of this document is to ensure that
reprogramming software from any vehicle manufacturer is compatible with hardware supplied by any tool
manufacturer.

U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) "OBD
service information" regulations include requirements for reprogramming emission-related control
modules in vehicles for all manufacturers by the aftermarket repair industry. This document is intended to
conform to those regulations for 2004 and later model year vehicles. For some vehicles, this interface
can also be used to reprogram emission-related control modules in vehicles prior to the 2004 model year,
and for non-emission related control modules. For other vehicles, this usage may require additional
manufacturer specific capabilities to be added to a fully compliant interface. A second part to this
document, SAE J2534-2, is planned to include expanded capabilities that tool suppliers can optionally
include in an interface to allow programming of these additional non-mandated vehicle applications. In
addition to reprogramming capability, this interface is planned for use in OBD compliance testing as
defined in SAE J1699-3. SAE J2534-1 includes some capabilities that are not required for Pass-Thru
Programming, but which enable use of this interface for those other purposes without placing a significant
burden on the interface manufacturers.

Additional requirements for future model years may require revision of this document, most notably the
inclusion of SAE J1939 for some heavy-duty vehicles. This document will be reviewed for possible
revision after those regulations are finalized and requirements are better understood. Possible revisions
include SAE J1939 specific software and an alternate vehicle connector, but the basic hardware of an
SAE J2534 interface device is expected to remain unchanged.

2. References

2.1 Applicable Publications

The following publications form a part of this specification to the extent specified herein. Unless
otherwise indicated, the latest version of SAE publications shall apply.

2.1.1 SAE PUBLICATIONS

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

SAE J1850—Class B Data Communications Network Interface
SAE J1939—Truck and Bus Control and Communications Network (Multiple Parts Apply)
SAE J1962—Diagnostic Connector
SAE J2610—DaimlerChrysler Information Report for Serial Data Communication Interface (SCI)

SAE J2534-1 Revised DEC2004

- 6 -

2.1.2 ISO DOCUMENTS

Available from ANSI, 25 west 43rd Street, New York, NY 10036-8002.

ISO 7637-1:1990—Road vehicles—Electrical disturbance by conduction and coupling—Part 1:

Passenger cars and light commercial vehicles with nominal 12 V supply voltage
ISO 9141:1989—Road vehicles—Diagnostic systems—Requirements for interchange of digital

information
ISO 9141-2:1994—Road vehicles—Diagnostic systems—CARB requirements for interchange of digital

information
ISO 11898:1993—Road vehicles—Interchange of digital information—Controller area network (CAN) for

high speed communication
ISO 14230-4:2000—Road vehicles—Diagnostic systems—Keyword protocol 2000—Part 4:

Requirements for emission-related systems
ISO/FDIS 15765-2—Road vehicles—Diagnostics on controller area networks (CAN)—Network layer

services
ISO/FDIS 15765-4—Road vehicles—Diagnostics on controller area networks (CAN)—Requirements for

emission-related systems

3. Definitions

3.1 Registry

A mechanism within Win32 operating systems to handle hardware and software configuration
information.

4. Acronyms

API Application Programming Interface
ASCII American Standard Code for Information Interchange
CAN Controller Area Network
CRC Cyclic Redundancy Check
DLL Dynamic Link Library
ECU Electronic Control Unit
IFR In-Frame Response
IOCTL Input / Output Control
KWP Keyword Protocol
OEM Original Equipment Manufacturer
PC Personal Computer
PWM Pulse Width Modulation
SCI Serial Communications Interface
SCP Standard Corporate Protocol
USB Universal Serial Bus
VPW Variable Pulse Width

SAE J2534-1 Revised DEC2004

- 7 -

5. Pass-Thru Concept

Programming application software supplied by the vehicle manufacturer will run on a commonly available
generic PC. This application must have complete knowledge of the programming requirements for the
control module to be programmed and will control the programming event. This includes the user
interface, selection criteria for downloadable software and calibration files, the actual software and
calibration data to be downloaded, the security mechanism to control access to the programming
capability, and the actual programming steps and sequence required to program each individual control
module in the vehicle. If additional procedures must be followed after the reprogramming event, such as
clearing Diagnostic Trouble Codes (DTC), writing part numbers or variant coding information to the
control module, or running additional setup procedures, the vehicle manufacturer must either include this
in the PC application or include the necessary steps in the service information that references
reprogramming.

This document defines the following two interfaces for the SAE J2534 pass-thru device:

a. Application program interface (API) between the programming application running on a PC and a

software device driver for the pass-thru device
b. Hardware interface between the pass-thru device and the vehicle

The manufacturer of an SAE J2534 pass-thru device shall supply connections to both the PC and the
vehicle. In addition to the hardware, the interface manufacturer shall supply device driver software, and a
Windows installation and setup application that will install the manufacturer's SAE J2534 DLL and other
required files, and also update the Windows Registry. The interface between the PC and the pass-thru
device can be any technology chosen by the tool manufacturer, including RS-232, RS-485, USB,
Ethernet, or any other current or future technology, including wireless technologies.

All programming applications shall utilize the common SAE J2534 API as the interface to the pass-thru
device driver. The API contains a set of routines that may be used by the programming application to
control the pass-thru device, and to control the communications between the pass-thru device and the
vehicle. The pass-thru device will not interpret the message content, allowing any message strategy and
message structure to be used that is understood by both the programming application and the ECU being
programmed. Also, because the message will not be interpreted, the contents of the message cannot be
used to control the operation of the interface. For example, if a message is sent to the ECU to go to high
speed, a specific instruction must also be sent to the interface to go to high speed.

The OEM programming application does not need to know the hardware connected to the PC, which
gives the tool manufacturers the flexibility to use any commonly available interface to the PC. The pass-
thru device does not need any knowledge of the vehicle or control module being programmed. This will
allow all programming applications to work with all pass-thru devices to enable programming of all control
modules for all vehicle manufacturers.

SAE J2534-1 Revised DEC2004

- 8 -

Figure 1 shows the relationship between the various components required for pass-thru programming
and responsibilities for each component:

Programming PC

Vehicle

Cable
Pass-thru
interface

Cable Interface

driver
API Application

Vehicle
manufacturer
determines
programming
sequence
and security
access

Tool
supplier
defines
interface
with pass-
thru device

SAE J1962
on vehicle
end

5 meter
max. length

Capabilities
defined in
SAE J2534

Hardware
supplied by
tool supplier

Could be
implemented
in scan tool

Tool supplier
defines cable
requirements,
if any,
between PC
and interface

Tool supplier
device driver,
installation, and
setup
procedure
based on
hardware
supported

Examples are:
 RS-232,
 USB,
 PCMCIA,
 Ethernet,
 IEEE1394,
 Bluetooth

SAE
J2534

Vehicle
manufacturer
programming
application
controls user
interface, vehicle
software and
calibration
selection,
programming
sequence, and
security access

Vehicle
manufacturer

Tool supplier

SAE
J2534

Vehicle
manufacturer

FIGURE 1—SAE J2534 OVERVIEW

6. Pass-Thru System Requirements

A "fully" compliant SAE J2534 interface shall support all communication protocols and capabilities defined
in this document. The interface's registry entry "Protocols Supported" (see section 9.2-Win32 Registry)
specifies the protocols fully supported by the interface.

6.1 PC Requirements

Generic PC running a Win32 Operating System (e.g., Windows 95/Windows 98/Windows NT/Windows
Millennium Edition, Windows 2000, Windows XP, …). The PC should be capable of connection to the
Internet.

6.2 Software Requirements and Assumptions

Reprogramming applications can assume that the PC will be connected to the Internet, although not all
applications will require this. The OEM application is limited to a single thread for communication with the
tool manufacturer DLL/API. Multiple protocols may be connected and used from the single application
thread (see Section 6.6).

SAE J2534-1 Revised DEC2004

- 9 -

The interface will not handle the tester present messages automatically. The OEM application is
responsible to handle tester present messages.

6.3 Connection to PC

The interface between the PC and the pass-thru device shall be determined by the manufacturer of the
pass-thru device. This can be RS-232, USB, Ethernet, IEEE1394, Bluetooth or any other connection that
allows the pass-thru device to meet all other requirements of this document, including timing
requirements. The tool manufacturer is also required to include the device driver that supports this
connection so that the actual interface used is transparent to both the PC programming application and
the vehicle.

6.4 Connection to Vehicle

The interface between the pass-thru device and the vehicle shall be an SAE J1962 connector for serial
data communications. The maximum cable length between the pass-thru device and the vehicle is five
(5) meters. The interface shall include an insulated banana jack that accepts a standard 0.175" diameter
banana plug as the auxiliary pin for connection of programming voltage to a vehicle specific connector on
the vehicle.

If powered from the vehicle, the interface shall:

a. operate normally within a vehicle battery voltage range of 8.0 to 18.0 volts D.C.,
b. survive a vehicle battery voltage of up to 24.0 volts D.C. for at least 10 minutes,
c. survive, without damage to the interface, a reverse vehicle battery voltage of up to 24.0 volts D.C. for

at least 10 minutes.

6.5 Communication Protocols

The following communication protocols shall be supported:

6.5.1 ISO 9141

The following specifications clarify and, if in conflict with ISO 9141, override any related specifications in
ISO 9141:

a. The maximum sink current to be supported by the interface is 100 mA.
b. The range for all tests performed relative to ISO 7637-1 is –1.0 to +40.0 V.
c. The default bus idle period before the interface shall transmit an address, shall be 300 ms.
d. Support following baud rate with ±0.5% tolerance: 10400.
e. Support following baud rate with ±1% tolerance: 10000.
f. Support following baud rates with ±2% tolerance: 4800, 9600, 9615, 9800, 10870, 11905, 12500,

13158, 13889, 14706, 15625, and 19200.
g. Support other baud rates if the interface is capable of supporting the requested value within ±2%.
h. The baud rate shall be set by the application, not determined by the SAE J2534 interface. The

interface is not required to support baud rate detection based on the synchronization byte.
i. Support odd and even parity in addition to the default of no parity, with seven or eight data bits.

Always one start bit and one stop bit.

SAE J2534-1 Revised DEC2004

- 10 -

j. Support for timer values that are less than or greater than those specified in ISO 9141 (see Figure 30
in Section 7.3.2).

k. Support ability to disable automatic ISO 9141-2 / ISO 14230 checksum verification by the interface to
allow vehicle manufacturer specific error detection.

l. If the ISO 9141 checksum is verified by the interface, and the checksum is incorrect, the message will
be discarded.

m. Support both ISO 9141 5-baud initialization and ISO 14230 fast initialization.
n. Interface shall not adjust timer parameters based on keyword values.

6.5.2 ISO 14230-4 (KWP2000)

The ISO 14230 protocol has the same specifications as the ISO 9141 protocol as outlined in the previous
section. In addition, the following specifications clarify and, if in conflict with ISO 14230, override any
related specifications in ISO 14230:

a. The pass-thru interface will not automatically handle tester present messages. The application needs

to handle tester present messages when required.
b. The pass-thru interface will not perform any special handling for the $78 response code. Any

message received with a $78 response code will be passed from the interface to the application. The
application is required to handle any special timing requirements based on receipt of this response
code, including stopping any periodic messages.

6.5.3 SAE J1850 41.6 KBPS PWM (PULSE WIDTH MODULATION)

The following additional features of SAE J1850 must be supported by the pass-thru device:

a. Capable of 41.6 kbps and high speed mode of 83.3 kbps.
b. Recommend Ford approved SAE J1850PWM (SCP) physical layer

6.5.4 SAE J1850 10.4 KBPS VPW (VARIABLE PULSE WIDTH)

The following additional features of SAE J1850 must be supported by the pass-thru device:

a. Capable of 10.4 kbps and high speed mode of 41.6 kbps
b. 4128 byte block transfer
c. Return to normal speed after a break indication

wang
高亮

SAE J2534-1 Revised DEC2004

- 11 -

6.5.5 CAN

The following features of ISO 11898 (CAN) must be supported by the pass-thru device:

a. 125, 250, and 500 kbps
b. 11 and 29 bit identifiers
c. Support for 80% ± 2% and 68.5% ± 2% bit sample point
d. Allow raw CAN messages. This protocol can be used to handle any custom CAN messaging

protocol, including custom flow control mechanisms.

6.5.6 ISO 15765-4 (CAN)

The following features of ISO 15765-4 must be supported by the pass-thru device:

a. 125, 250, and 500 kbps
b. 11 and 29 bit identifiers
c. Support for 80% ± 2% bit sample point
d. To maintain acceptable programming times, the transport layer flow control function, as defined in

ISO 15765-2, must be incorporated in the pass-thru device (see Appendix A). If the application does
not use the ISO 15765-2 transport layer flow control functionality, the CAN protocol will allow for any
custom transport layer.

e. Receive a multi-frame message with an ISO15765_BS of 0 and an ISO15765_STMIN of 0, as
defined in ISO 15765-2.

f. No single frame or multi-frame messages can be received without matching a flow control filter. No
multi-frame messages can be transmitted without matching a flow control filter.

g. Periodic messages will not be suspended during transmission or reception of a multi-frame
segmented message.

6.5.7 SAE J2610 DAIMLERCHRYSLER SCI

Reference the SAE J2610 Information Report for a description of the SCI protocol.

When in the half-duplex mode (when SCI_MODE of TxFlags is set to {1} Half-Duplex), every data byte
sent is expected to be "echoed" by the controller. The next data byte shall not be sent until the echo byte
has been received and verified. If the echoed byte received doesn't match the transmitted byte, or if after
a period of T1 no response was received, the transmission will be terminated. Matching echoed bytes will
not be placed in the receive message queue.

6.6 Simultaneous Communication On Multiple Protocols

The pass-thru device must be capable of supporting simultaneous communication on multiple protocols
during a single programming event. Figure 2 indicates which combinations of protocols shall be
supported. If SCI (SAE J2610) communication is not required during the programming event, the
interface shall be capable of supporting one of the protocols from data link set 1, data link set 2, and data
link set 3. If SCI (SAE J2610) communication is required during the programming event, the interface
shall be capable of supporting one of the SCI protocols and one protocol from data link set 1.

SAE J2534-1 Revised DEC2004

- 12 -

 DATA LINK SET

1
DATA LINK SET

2
DATA LINK SET

3
Without SCI SAE J1850 VPW

SAE J1850 PWM
ISO 9141
ISO 14230

CAN
ISO 15765

With SCI SAE J1850 VPW
SAE J1850 PWM

SCI A
SCI B

None

FIGURE 2—SIMULTANEOUS COMMUNICATION OPTIONS

6.7 Programmable Power Supply

The interface shall be capable of supplying between 5 and 20 volts to one of the following pins (6, 9, 11,
12, 13 or 14) on the SAE J1962 diagnostic connector, or to an auxiliary pin which would need to be
connected to the vehicle via a cable that is unique to the vehicle. The auxiliary pin on the interface shall
be a female banana jack (see Section 6.4- Connection to Vehicle). As well, short to ground capability on
pin 15 is required. The following requirements shall be met by the power supply:

a. Minimum 5 V DC
b. Maximum 20 V DC
c. Resolution 0.1V DC
d. Accuracy ±2% of requested voltage
e. Maximum source current 150 mA
f. Maximum sink current 300mA (only for SHORT_TO_GROUND on pin 15).
g. Maximum 1 ms settling time (required for SCI protocol only, reference SAE J2610 Information

Report)
h. Pin assignment software selectable

SAE J2534-1 Revised DEC2004

- 13 -

6.8 Pin Usage

Figure 3 indicates the possible uses for each pin of the SAE J1962 connector and for the auxiliary pin.
This figure also indicates the default condition for each pin, which is the required condition when the
interface is connected to the vehicle, and the condition to return to when the pin is no longer used to
supply programming voltage, short to ground, or serial data communication. For the following table, high
impedance is defined as greater than 500 kΩ impedance relative to signal ground, and as greater than
500 kΩ impedance relative to chassis ground.

PIN NO. Possible Uses Default
Aux Auxiliary programming voltage (not part of SAE

J1962 connector)
High impedance

1 High impedance
2 SAE J1850 (+) SAE J1850 (+)
3 High impedance

4 Chassis Ground Chassis Ground
5 Signal Ground Signal Ground
6 ISO 15765-4/CAN High

Programming Voltage
SCI A Engine (Rx)

High impedance

7 ISO 9141/ ISO 14230 K-line
SCI A engine (Tx)
SCI A Trans (Tx)
SCI B Engine (Tx)

High impedance

8 High impedance

9 SCI B Trans (Rx)
Programming Voltage

High impedance

10 SAE J1850 (-) SAE J1850 (-)
11 Programming Voltage High impedance
12 SCI B engine (Rx)

Programming Voltage
High impedance

13 Programming Voltage High impedance
14 ISO 15765-4/ CAN Low

Programming Voltage
SCI A Trans (Tx)

High impedance

15 ISO 9141/ ISO 14230 L-line
Short to Ground
SCI B Trans (Tx)

High impedance

16 Unswitched battery voltage Unswitched battery
voltage

FIGURE 3—PIN USAGE

SAE J2534-1 Revised DEC2004

- 14 -

6.9 Data Buffering

The interface/API shall be capable of receiving 8 simultaneous messages. For ISO 15765 these can be
multi-frame messages. The interface/API shall be capable of buffering a maximum length (4128 byte)
transmit message and a maximum length (4128 byte) receive message.

6.10 Error Recovery

6.10.1 DEVICE NOT CONNECTED

If the DLL returns ERR_DEVICE_NOT_CONNECTED from any function, that error shall continue to be
returned by all functions, even if the device is reconnected. An application can recover from this error
condition by closing the device (with PassThruClose) and re-opening the device (with PassThruOpen,
getting a new device ID).

6.10.2 BUS ERRORS

All devices shall handle bus errors in a consistent manner. There are two error strategies: Retry and
Drop.

The Retry strategy will keep trying to send a packet until successful or stopped by the application. If
loopback is on and the message is successfully sent after some number of retries, only one copy of the
message shall be placed in the receive queue. Even if the hardware does not support retries, the
firmware/software must retry the transmission. If the error condition persists, a blocking write will wait the
specified timeout and return ERR_TIMEOUT. The DLL must return the number of successfully
transmitted messages in pNumMsgs. The DLL shall not count the message being retried in pNumMsgs.
After returning from the function, the device does not stop the retries. The only functions that will stop the
retries are PassThruDisconnect (on that protocol), PassThruClose, or PassThruIoctl (with an IoctllD of
CLEAR_TX_BUFFER).

Devices shall use the Retry strategy in the following scenarios:

• All CAN errors, such as bus off, lack of acknowledgement, loss of arbitration, and no connection (lack

of terminating resistor)
• SAE J1850PWM or SAE J1850VPW bus fault (bus stuck passive) or loss of arbitration (bus stuck

active)

The Drop strategy will delete a message from the queue. The message can be dropped immediately on
noticing an error or at the end of the transmission. PassThruWriteMsg shall treat dropped messages the
same as successfully transmitted messages. However, if loopback is on, the message shall not be placed
in the receive queue.

Devices shall use the Drop strategy in the following scenarios:

• If characters are echoed improperly in SCI
• Corrupted ISO 9141 or ISO 14230 transmission
• SAE J1850PWM lack of acknowledgement (Exception: The device must try sending the message 3

times before dropping)

SAE J2534-1 Revised DEC2004

- 15 -

7. Win32 Application Programming Interface

7.1 API Functions – Overview

To conform to this document a vendor supplied API implementation (DLL) must support the functions
included in Figure 4.

Function Description
PassThruOpen Establish a connection with a Pass-Thru device.
PassThruClose Terminate a connection with a Pass-Thru device.
PassThruConnect Establish a connection with a protocol channel.
PassThruDisconnect Terminate a connection with a protocol channel.
PassThruReadMsgs Read message(s) from a protocol channel.
PassThruWriteMsgs Write message(s) to a protocol channel.
PassThruStartPeriodicMsg Start sending a message at a specified time interval

on a protocol channel.
PassThruStopPeriodicMsg Stop a periodic message.
PassThruStartMsgFilter Start filtering incoming messages on a protocol

channel.
PassThruStopMsgFilter Stops filtering incoming messages on a protocol

channel.
PassThruSetProgrammingVoltage Set a programming voltage on a specific pin.
PassThruReadVersion Reads the version information for the DLL and API.
PassThruGetLastError Gets the text description of the last error.
PassThruIoctl General I/O control functions for reading and writing

protocol configuration parameters (e.g. initialization,
baud rates, programming voltages, etc.).

FIGURE 4—SAE J2534 API FUNCTIONS

7.2 API Functions – Detailed Information

7.2.1 PASSTHRUOPEN

This function is used to establish a connection and intialize the Pass-Thru Device. This function must be
called one time before any other function with the exception of PassThruGetLastError. Any function called
before a successul call to PassThruOpen must return ERR_INVALID_DEVICE_ID. If the function is
successful, a value of STATUS_NOERROR is returned. The Device ID returned is used as a handle to
the initialized SAE J2534 device.

7.2.1.1 C / C++ Prototype

extern "C" long WINAPI PassThruOpen
(
 void *pName
 unsigned long *pDeviceID
)

SAE J2534-1 Revised DEC2004

- 16 -

7.2.1.2 Parameters

pName M ust be NULL (reserved for future use with multiple devices).

pDeviceID Pointer to location for the device ID that is assigned by the DLL.

7.2.1.3 Return Values – See Figure 5

Definition Description
STATUS_NOERROR Function call successful
ERR_DEVICE_NOT_CONNECTED Unable to communicate with the device
ERR_DEVICE_IN_USE Device is currently open
ERR_NULL_PARAMETER NULL pointer supplied where a valid pointer is required
ERR_FAILED Undefined error, use

PassThruGetLastError for text description

FIGURE 5—RETURN VALUES

7.2.2 PASSTHRUCLOSE

This function is used to close the connection to a Pass-Thru Device. All periodic messages will be
stopped, filters will be cleared, and all pins will return to their default state (see Section 6.8). This function
must be called before an application exits. The DLL can use this function to de-allocate data structures
and deactivate any device drivers. If the function is successful, a value of STATUS_NOERROR is
returned. After this call, all active protocols will be disconnected, Channel Ids will no longer be valid, and
any function call other than PassThruOpen will result in the error ERR_INVALID_DEVICE_ID being
returned (with the exception of PassThruGetLastError).

7.2.2.1 C / C++ Prototype

extern "C" long WINAPI PassThruClose
(
 unsigned long DeviceID
)

7.2.2.2 Parameters

DeviceID DeviceID returned from PassThruOpen

SAE J2534-1 Revised DEC2004

- 17 -

7.2.2.3 Return Values – See Figure 6

Definition Description
STATUS_NOERROR Function call successful
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device.

ERR_INVALID_DEVICE_ID Device ID invalid
ERR_FAILED Undefined error, use

PassThruGetLastError for text description

FIGURE 6—RETURN VALUES

7.2.3 PASSTHRUCONNECT

This function is used to establish a logical connection with a protocol channel on the specified SAE J2534
device. After this function is called, the value pointed to by pChannelID is used as the logical identifier for
the combination of Device ID and Protocol ID. If the function is successful, a value of
STATUS_NOERROR is returned and a valid channel ID will be placed in <pChannelID>. All future
interactions with the protocol channel will be done using the pChannelID. Note that the interface will
block all received messages on this channel until a filter is set.

7.2.3.1 C / C++ Prototype

extern “C” long WINAPI PassThruConnect
(
 unsigned long DeviceID,
 unsigned long ProtocolID,
 unsigned long Flags,
 unsigned long BaudRate,
 unsigned long *pChannelID
)

7.2.3.2 Parameters

DeviceID Device ID returned from PassThruOpen

ProtocolID Protocol ID,

Flags Connection flags,

BaudRate Initial baud rate

pChannelID Pointer to location for the channel ID that is assigned by the DLL.

SAE J2534-1 Revised DEC2004

- 18 -

7.2.3.3 Connect Flag Values – See Figure 7

Definition Flags Bit(s) Description Value
 31-24 Unused Tool manufacturer specific- shall be

set to 0
 23-16 Unused Reserved for SAE J2534-2-shall be

set to 0
 15-13 Unused Reserved for SAE - shall be set to 0
ISO9141_K_LINE
_
ONLY

12 L line usage for
ISO9141
and ISO14230
Initialization address

0 = use L-line and K-line for
initialization address
1 = use K-line only line for
initialization address

CAN_ID_BOTH 11 CAN ID support type
for CAN and ISO 15765
(also see bit 8)

0 = either standard or extended CAN
ID types used – CAN ID type defined
by bit 8
1 = both standard and extended CAN
ID types used – if the CAN controller
allows prioritizing either standard
(11 bit) or extended (29 bit) CAN ID's
then bit 8 will determine the higher
priority ID type

 10 Unused Reserved for SAE - shall be set to 0
ISO9141_NO_
CHECKSUM

9 Checksum control for
ISO9141 and ISO14230

0 = The interface will generate and
append the checksum as defined in
ISO 9141-2 and ISO 14230-2 for
transmitted messages, and verify the
checksum for received messages.
1 = The interface will not generate
and verify the checksum-the entire
message will be treated as data by
the interface

CAN_29BIT_ID 8 CAN ID type for CAN
and ISO 15765
(also see bit 11)

0 = Receive standard CAN ID
(11 bit)
1 = Receive extended CAN ID (29
bit)

 7 Unused Reserved for SAE- shall be set to 0

FIGURE 7—FLAG VALUES

SAE J2534-1 Revised DEC2004

- 19 -

7.2.3.4 Protocol ID Values – See Figure 8

Definition Description Value(s)
J1850VPW GM / DaimlerChrysler CLASS2 0x01
J1850PWM Ford SCP 0x02
ISO9141 ISO 9141 and ISO 9141-2 0x03
ISO14230 ISO 14230-4 (Keyword Protocol 2000) 0x04
CAN Raw CAN (flow control not handled

automatically by interface)
0x05

ISO15765 ISO 15765-2 flow control enabled (see
Appendix A for high level description)

0x06

SCI_A_ENGINE SAE J2610 (DaimlerChrysler SCI)
configuration A for engine

0x07

SCI_A_TRANS SAE J2610 (DaimlerChrysler SCI)
configuration A for transmission

0x08

SCI_B_ENGINE SAE J2610 (DaimlerChrysler SCI)
configuration B for engine

0x09

SCI_B_TRANS SAE J2610 (DaimlerChrysler SCI)
configuration B for transmission

0x0A

Reserved Reserved for SAE use 0x0B – 0x7FFF
Reserved Reserved for SAE J2534-2 0x8000 - 0xFFFF
Unused Tool manufacturer specific 0x10000 – 0xFFFFFFFF

FIGURE 8—PROTOCOL ID VALUES

SAE J2534-1 Revised DEC2004

- 20 -

7.2.3.5 Return Values – See Figure 9

Definition Description
STATUS_NOERROR Function call successful.

ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_NOT_SUPPORTED Device cannot support a protocol, or a
particular (requested) flag on a protocol
mandated by this document. Device is not
fully SAE J2534 complaint

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_INVALID_PROTOCOL_ID Invalid ProtocolID value, unsupported
ProtocolID, or there is a resource conflict
(i.e. trying to connect to multiple protocols
that are mutually exclusive such as
J1850PWM and J1850VPW or CAN and
SCI_A, etc.).

ERR_NULL_PARAMETER NULL pointer supplied where a valid
pointer is required

ERR_INVALID_FLAGS Invalid flag values.

ERR_INVALID_BAUDRATE The desired baud rate cannot be achieved
within the tolerance specified in Section
6.5

ERR_FAILED Undefined error, use
PassThruGetLastError for text description

ERR_CHANNEL_IN_USE Channel number is currently connected.

FIGURE 9—RETURN VALUES

7.2.4 PASSTHRUDISCONNECT

This function is used to terminate a logical connection with a protocol channel. If the function is
successful, a value of STATUS_NOERROR is returned. After this call, all filters associated with the
channel will be cleared, all periodic messages associated with the channel will be stopped, the
associated pins will return to their default state (see Section 6.8) and the Channel ID will no longer be
valid.

7.2.4.1 C / C++ Prototype

extern “C” long WINAPI PassThruDisconnect
(
 unsigned long ChannelID
)

SAE J2534-1 Revised DEC2004

- 21 -

7.2.4.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

7.2.4.3 Return Values – See Figure 10

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device.

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_FAILED Undefined error, use PassThruGetLastError
for text description.

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

FIGURE 10—RETURN VALUES

7.2.5 PASSTHRUREADMSGS

This function reads messages and indications from the receive buffer. All messages and indications shall
be read in the order that they occurred on the bus. If a transmit message generated a loopback message
and TxDone indication, the TxDone indication shall always be queued first. Except for loopback
messages and indications, no messages shall be queued for reception without matching a
PASS_FILTER (for non-ISO 15765) or FLOW_CONTROL filter (for ISO 15765). On ISO 15765, PCI
bytes are transparently removed by the API. If the function is successful, a value of STATUS_NOERROR
is returned.

Section 8.3 shows the formatting of messages and indications in the PASSTHRU_MSG structure.
Section 8.7.2 shows the valid combinations of the RxStatus bits for the messages and indications to be
returned to the application. For each protocol, this function receives the indications from the interface as
shown in Figure 11.

Protocol ID
Message/

Indication
ISO
9141

ISO
14230

SAE
J1850
PWM

SAE
J1850
VPW

CAN ISO
15765-

4

SAE
J2610
(SCI)

Normal Message X X X X X X X

RxStart Indication X X X

RxBreak Indication X X

TxDone Indication X

Loopback Message
(if enabled)

X X X X X X X

FIGURE 11—INDICATIONS

SAE J2534-1 Revised DEC2004

- 22 -

7.2.5.1 C / C++ Prototype

extern “C” long WINAPI PassThruReadMsgs
(
 unsigned long ChannelID,
 PASSTHRU_MSG *pMsg,
 unsigned long *pNumMsgs,
 unsigned long Timeout
)

7.2.5.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

pMsg Pointer to message structure(s).

pNumMsgs Pointer to location where number of messages to read is specified. On return from the

function this location will contain the actual number of messages read.

Timeout Read timeout (in milliseconds). If a value of 0 is specified the function retrieves up to
pNumMsgs messages and returns immediately. Otherwise, the API will not return until
the Timeout has expired, an error has occurred, or the desired number of messages
have been read. If the number of messages requested have been read, the function
shall not return ERR_TIMEOUT, even if the timeout value is zero.

SAE J2534-1 Revised DEC2004

- 23 -

7.2.5.3 Return Values – See Figure 12

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_NULL_PARAMETER NULL pointer supplied where a valid
pointer is required.

ERR_TIMEOUT Timeout. Device could not read the
specified number of messages. The
actual number of messages read is
placed in <NumMsgs>. If a timeout
occurs and there are no available
messages, ERR_BUFFER_EMPTY must
be returned.

ERR_BUFFER_EMPTY Protocol message buffer empty, no
messages available to read.

ERR_NO_FLOW_CONTROL No flow control filter set or matched (for
protocolID ISO15765 only).

ERR_FAILED Undefined error, use
PassThruGetLastError for text description

ERR_BUFFER_OVERFLOW Indicates a buffer overflow occurred and
messages were lost. The actual number
of messages read is placed in
<NumMsgs>.

FIGURE 12—RETURN VALUES

7.2.6 PASSTHRUWRITEMSGS

This function is used to send messages. The messages are placed in the buffer and sent in the order
they were received. Only one message per protocol can be in transmission at a time (with one exception-
See PassThruStartPeriodicMsg). If the function is successful, a value of STATUS_NOERROR is
returned. Specifying a non-zero Timeout performs a blocking write. When using blocking writes, this
function does not return until all messages are successfully sent on the vehicle network, or the timeout
has expired or an error occurs.

Messages must follow the format specified in Section 8.3. The interface shall not modify structures
pointed to by pMsg. Note that some protocols will generate indications when transmitting (See
PassThruReadMsg).

wang
高亮

SAE J2534-1 Revised DEC2004

- 24 -

When using the ISO 15765-4 protocol, only SingleFrame messages can be transmitted without a
matching flow control filter. Also, PCI bytes are transparently added by the API. See
PassThruStartMsgFilter and Appendix A for a discussion of flow control filters.

7.2.6.1 C / C++ Prototype

extern “C” long WINAPI PassThruWriteMsgs
(
 unsigned long ChannelID,
 PASSTHRU_MSG *pMsg,
 unsigned long *pNumMsgs,
 unsigned long Timeout
)

7.2.6.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

pMsg Pointer to message structure(s).

pNumMsgs Pointer to the location where number of messages to write is specified. On return will

contain the actual number of messages that were transmitted (when Timeout is non-
zero) or placed in the transmit queue (when Timeout is zero).

Timeout Write timeout (in milliseconds). When a value of 0 is specified, the function queues as
many of the specified messages as possible and returns immediately. When a value
greater than 0 is specified, the function will block until the Timeout has expired, an error
has occurred, or the desired number of messages have been transmitted on the vehicle
network. Even if the device can buffer only one packet at a time, this function shall be
able to send an arbitrary number of packets if a Timeout value is supplied. Since the
function returns early if all the messages have been sent, there is normally no penalty for
having a large timeout (several seconds). If the number of messages requested have
been written, the function shall not return ERR_TIMEOUT, even if the timeout value is
zero.

 When an ERR_TIMEOUT is returned, only the number of messages that were sent on
the vehicle network is known. The number of messages queued is unknown. Application
writers should avoid this ambiguity by using a Timeout value large enough to work on
slow devices and networks with arbitration delays.

wang
高亮

wang
高亮

SAE J2534-1 Revised DEC2004

- 25 -

7.2.6.3 Return Values – See Figure 13

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_NOT_SUPPORTED Device cannot support a particular
(requested) flag on a protocol mandated
by this document. Device is not fully SAE
J2534 compliant.

Example: Requesting SCI TX VOLTAGE
on a device without the capability

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_INVALID_MSG Invalid message structure pointed to by
pMsg (Reference Section 8 Message
Structure).

ERR_NULL_PARAMETER NULL pointer supplied where a valid
pointer is required.

ERR_FAILED Undefined error, use
PassThruGetLastError for text description

ERR_TIMEOUT Timeout. Device could not write the
specified number of messages. The
actual number of messages sent on the
vehicle network is placed <NumMsgs>.
Only applies when Timeout is non-zero.

ERR_MSG_PROTOCOL_ID Protocol type in the message does not
match the protocol associated with the
ChannelID

ERR_NO_FLOW_CONTROL Multi-segment transmission without
matching flow control filter set (for
protocolID ISO15765 only).

ERR_BUFFER_FULL Protocol message buffer is full. Some
messages could not be queued. Only
applies when Timeout is zero.

FIGURE 13—RETURN VALUES

SAE J2534-1 Revised DEC2004

- 26 -

7.2.7 PASSTHRUSTARTPERIODICMSG

This function will immediately queue the specified message for transmission, and repeat at the specified
interval. Periodic messages are limited in length to a single frame message of 12 bytes or less, including
header or CAN ID. Periodic messages shall have priority over messages queued with
PassThruWriteMsgs, but periodic messages must not violate bus idle timing parameters (e.g. P3_MIN).
Periodic messages shall generate TxDone indications (ISO 15765) and loopback messages (on any
protocol, if enabled). On ISO 15765, periodic messages can be sent during a multi-frame transmission or
reception. If the function is successful, a value of STATUS_NOERROR is returned. The Pass-Thru
device must support a minimum of ten periodic messages.

PassThruDisconnect shall delete all periodic messages on that channel. PassThruClose shall delete all
periodic messages on all channels for the device. All periodic messages will be stopped on a
PassThruDisconnect for the associated protocol or a PassThruClose for the device.

7.2.7.1 C / C++ Prototype

extern “C” long WINAPI PassThruStartPeriodicMsg
(
 unsigned long ChannelID,
 PASSTHRU_MSG *pMsg,
 unsigned long *pMsgID,
 unsigned long TimeInterval
)

7.2.7.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

pMsg Pointer to message structure.

pMsgID Pointer to location for the message ID that is assigned by the DLL.

TimeInterval Time interval between the start of successive transmissions of this message, in

milliseconds. The valid range is 5-65535 milliseconds.

wang
高亮

wang
高亮

wang
高亮

wang
高亮

wang
高亮

wang
高亮

SAE J2534-1 Revised DEC2004

- 27 -

7.2.7.3 Return Values – See Figure 14

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_NOT_SUPPORTED Device cannot support requested
functionality mandated by this document.
Device is not fully SAE J2534 compliant

Example: Requesting 20ms interval, but
hardware only supports 50ms intervals

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_INVALID_MSG Invalid message structure pointed to by
pMsg. (Reference Section 8 Message
Structure)

ERR_NULL_PARAMETER NULL pointer supplied where a valid
pointer is required.

ERR_INVALID_TIME_INTERVAL Invalid TimeInterval value.

ERR_FAILED Undefined error, use
PassThruGetLastError for text
description

ERR_MSG_PROTOCOL_ID Protocol type in the message does not
match the protocol associated with the
ChannelID

ERR_EXCEEDED_LIMIT Exceeded the maximum number of
periodic message IDs or the maximum
allocated space.

FIGURE 14—RETURN VALUES

7.2.8 PASSTHRUSTOPPERIODICMSG

This function stops the specified periodic message. If the function is successful, a value of
STATUS_NOERROR is returned. After this call the MsgID will be invalid.

Note that periodic messages that have been queued for transmission or that are in the process of being
transmitted might not be stopped by this function.

SAE J2534-1 Revised DEC2004

- 28 -

7.2.8.1 C / C++ Prototype

extern “C” long WINAPI PassThruStopPeriodicMsg
(
 unsigned long ChannelID,
 unsigned long MsgID
)

7.2.8.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

MsgID Message ID that is assigned by the PassThruStartPeriodicMsg function.

7.2.8.3 Return Values – See Figure 15

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device.

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_FAILED Undefined error, use
PassThruGetLastError for text
description.

ERR_INVALID_MSG_ID Invalid MsgID value.

FIGURE 15—RETURN VALUES

7.2.9 PASSTHRUSTARTMSGFILTER

This function starts filtering of incoming messages. If the function is successful, a value of
STATUS_NOERROR is returned. A minimum of ten message filters shall be supported by the interface
for each supported protocol. PassThruDisconnect shall delete all message filters on that channel.
PassThruClose shall delete all filters on all channels for the device. Pattern and Mask messages shall
follow the protocol formats specified in Section 8. However, only the first twelve (12) bytes, including
header or CAN ID, are used by the filter. ERR_INVALID_MSG shall be returned if the filter length
exceeds 12. Note that this function does not clear any messages that may have been received and
queued before the filter was set. Users are cautioned to consider performing a CLEAR_RX_BUFFER
after starting a message filter to be sure that unwanted frames are purged from any receive buffers.

wang
高亮

SAE J2534-1 Revised DEC2004

- 29 -

For all protocols except ISO 15765:

• PASS_FILTERs and BLOCK_FILTERs will be applied to all received messages. They shall not be

applied to indications or loopback messages
• FLOW_CONTROL_FILTERs must not be used and shall cause the interface to return

ERR_INVALID_FILTER_ID
• Both pMaskMsg and pPatternMsg must have the same DataSize and TxFlags. Otherwise, the

interface shall return ERR_INVALID_MSG
• The default filter behavior after PassThruConnect is to block all messages, which means no messages

will be placed in the receive queue until a PASS_FILTER has been set. Messages that match a
PASS_FILTER can still be blocked by a BLOCK_FILTER

• Figure 16 and Figure 17 show how the message filtering mechanism operates

PASS Filter BLOCK Filter Message

Matches PASS
Filter

Message
Matches
BLOCK Filter

Action

No No N/A N/A Block
Yes No No N/A Block
Yes No Yes N/A Pass
No Yes N/A No Block
No Yes N/A Yes Block
Yes Yes No No Block
Yes Yes No Yes Block
Yes Yes Yes No Pass
Yes Yes Yes Yes Block

FIGURE 16—MESSAGE FILTER ACTIONS

SAE J2534-1 Revised DEC2004

- 30 -

FIGURE 17—MESSAGE FILTER FLOW

For ISO 15765:

• PASS_FILTERs and BLOCK_FILTERs must not be used and shall cause the interface to return

ERR_INVALID_FILTER_ID
• Filters shall not be applied to indications or loopback messages. When loopback is on, the original

message shall be copied to the receive queue upon the last segment being transmitted on the bus
• Non-segmented messages do not need to match a FLOW_CONTROL_FILTER
• No segmented messages can be transmitted without matching an appropriate

FLOW_CONTROL_FILTER. An appropriate filter is one in which the pFlowControlMsg CAN ID
matches the messages to be transmitted. Also, the ISO 15765_ADDR_TYPE (reference TxFlags in
Section 8.7.3) bits must match. If that bit is set, the first byte after the CAN IDs (the extended address)
must match too

• No message (segmented or unsegmented) shall be received without matching an appropriate
FLOW_CONTROL_FILTER. An appropriate filter is one in which the pPatternMsg CAN ID matches
the incoming message ID. If the ISO 15765_ADDR_TYPE (reference TxFlags in Section 8.7.3) bit is
set in the filter, the first byte after the CAN IDs (the extended address) must match too

• All 3 message pointers must have the same DataSize and TxFlags. Otherwise, the interface shall
return ERR_INVALID_MSG

• Both the pFlowControlMsg ID and the pPatternMsg ID must be unique (not match any IDs in any other
filters). The only exception is that pPatternMsg can equal pFlowControlMsg to allow for receiving
functionally addressed messages. In this case, only non-segmented messages can be received

• See Appendix A for a detailed description of flow control filter usage.

Forward to
DLL/PCC

Block Filters

Pass Filters

Messages from
interface

Discard
message

Matching

Not matching

Not matching

Matching

Default behavior
of "Pass None"

Default behavior
of "Block None"

SAE J2534-1 Revised DEC2004

- 31 -

7.2.9.1 C / C++ Prototype

extern “C” long WINAPI PassThruStartMsgFilter
(
 unsigned long ChannelID,
 unsigned long FilterType,
 PASSTHRU_MSG *pMaskMsg,
 PASSTHRU_MSG *pPatternMsg,
 PASSTHRU_MSG *pFlowControlMsg,
 unsigned long *pFilterID
)

7.2.9.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

FilterType Designates:

 PASS_FILTER – allows matching messages into the receive queue. This filter type is
only valid on non-ISO 15765 channels

 BLOCK_FILTER – keeps matching messages out of the receive queue. This filter
type is only valid on non-ISO 15765 channels

FLOW_CONTROL_FILTER – allows matching messages into the receive queue and
defines an outgoing flow control message to support the ISO 15765-2 flow control
mechanism. This filter type is only valid on ISO 15765 channels.

pMaskMsg For a PASS_FILTER or BLOCK_FILTER:

This designates a pointer to the mask message that will be applied to each incoming
message (i.e., the mask message that will be ANDed to each incoming message) to
mask any unimportant bits.

When using the CAN protocol, setting the first 4 bytes of pMaskMsg to $FF makes
the filter specific to one CAN ID. Using other values allows for the reception or
blocking of multiple CAN identifiers.

For a FLOW_CONTROL_FILTER:

The mask shall consist of 4 or 5 bytes of $FF, with a corresponding DataSize. Five
bytes are only allowed when the extended address bit in TxFlags is set. Flow control
filters are point-to-point, and shall not be allowed to match multiple CAN identifiers.
The only exception is to allow for masking the priority field in a 29-bit CAN ID as
specified in ISO 15765-2 Annex A. In this case Data[0] can be $E3.

SAE J2534-1 Revised DEC2004

- 32 -

pPatternMsg For a PASS_FILTER or BLOCK_FILTER:

Designates a pointer to the pattern message that will be compared to the incoming
message after the mask message has been applied. If the result matches this pattern
message and the FilterType is PASS_FILTER, then the incoming message will be
added to the receive queue (otherwise it will be discarded). If the result matches this
pattern message and the FilterType is BLOCK_FILTER, then the incoming message
will be discarded (otherwise it will be added to the receive queue). Message bytes in
the received message that are beyond the DataSize of the pattern message will be
treated as “don’t care”.

 For a FLOW_CONTROL_FILTER:

Designates a pointer to the CAN ID (with optional extended address) at the other end
of an ISO 15765-2 conversation. Any messages on the bus not matching a
pPatternMsg must be discarded.

pFlowControlMsg This pointer must be null when requesting a PASS_FILTER or a BLOCK_FILTER,
otherwise ERR_INVALID_MSG shall be returned.

 For a FLOW_CONTROL_FILTER:

Designates a pointer to the CAN ID used when sending CAN frames during an ISO
15765-2 segmented transmission or reception. This is the CAN ID to match against
the CAN ID in a segmented PassThruWriteMsg. This message shall only contain the
CAN ID (and extended address byte if the ISO15765_EXT_ADDR flag is set).

pFilterID Pointer to location for the filter ID that is assigned by the DLL.

7.2.9.3 Filter Type Values – See Figure 18

Definition

Value

PASS_FILTER 0x00000001
BLOCK_FILTER 0x00000002
FLOW_CONTROL_FILTER 0x00000003
Reserved 0x00000004-0x00007FFF
Reserved for SAE J2534-2 0x00008000-0x0000FFFF
Tool manufacturer specific 0x00010000-0xFFFFFFFF

FIGURE 18—FILTER TYPE VALUES

SAE J2534-1 Revised DEC2004

- 33 -

7.2.9.4 Return Values – See Figure 19

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device.

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_INVALID_MSG Invalid message structure pointed to by
message pointers or messages do not
share common TxFlags and DataSize.
(Reference Section 8 - Message
Structure)

ERR_NULL_PARAMETER NULL pointer supplied where a valid
pointer is required.

ERR_FAILED Undefined error, use
PassThruGetLastError for text
description.

ERR_NOT_UNIQUE A CAN ID in pPatternMsg or
pFlowControlMsg matches either ID in
an existing FLOW_CONTROL_FILTER.

ERR_EXCEEDED_LIMIT Exceeded the maximum number of filter
message IDs or the maximum allocated
space.

ERR_MSG_PROTOCOL_ID Protocol type in the message does not
match the protocol associated with the
ChannelID.

FIGURE 19—RETURN VALUES

7.2.10 PASSTHRUSTOPMSGFILTER

This function removes the specified filter. If the function is successful, a value of STATUS_NOERROR is
returned. After this call the FilterID will be invalid.

7.2.10.1 C / C++ Prototype

extern “C” long WINAPI PassThruStopMsgFilter
(
 unsigned long ChannelID,
 unsigned long FilterID
)

SAE J2534-1 Revised DEC2004

- 34 -

7.2.10.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function.

FilterID Filter ID that is assigned by the PassThruStartMsgFilter function.

7.2.10.3 Return Values – See Figure 20

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_FAILED Undefined error, use
PassThruGetLastError for text
description

ERR_INVALID_FILTER_ID Invalid FilterID value.

FIGURE 20—RETURN VALUES

7.2.11 PASSTHRUSETPROGRAMMINGVOLTAGE

This function sets a single programming voltage on a single specific pin. The programming voltage pins
are mutually exclusive, and at any given time programming voltage can only be applied to a single pin.
This does not apply to pin 15 (short to ground), which can be shorted to ground simultaneously with
programming voltage on another pin. The programming voltage must be turned off before the
programming voltage can be applied to a different pin. The default state of the pins shall be
VOLTAGE_OFF.

If the function is successful, a value of STATUS_NOERROR is returned. It is up to the application
programmer to insure that voltages are not applied to any pins incorrectly. This function cannot protect
from incorrect usage (e.g., applying a voltage to pin 6 when it is being used for the CAN protocol). Note
that for SCI protocol, the application would set the PinNumber, set the Voltage to VOLTAGE_OFF, and
set SCI_TX_VOLTAGE in TxFlags of the message to pulse the programming voltage to 20 V DC.

This function can be called only after calling PassThruOpen.

7.2.11.1 C / C++ Prototype

extern “C” long WINAPI PassThruSetProgrammingVoltage
(
 unsigned long DeviceID,
 unsigned long PinNumber,
 unsigned long Voltage
)

SAE J2534-1 Revised DEC2004

- 35 -

7.2.11.2 Parameters

DeviceID Device ID returned from PassThruOpen

PinNumber The pin on which the programming voltage will be set. Valid options are:
 0 – Auxiliary output pin (for non-SAE J1962 connectors)
 6 – Pin 6 on the SAE J1962 connector.
 9 – Pin 9 on the SAE J1962 connector.
 11 – Pin 11 on the SAE J1962 connector.
 12 – Pin 12 on the SAE J1962 connector.
 13 – Pin 13 on the SAE J1962 connector.
 14 – Pin 14 on the SAE J1962 connector.
 15 – Pin 15 on the SAE J1962 connector (short to ground only).

Voltage The voltage (in millivolts) to be set. Valid values are:
 5000mV-20000mV (limited to 150mA with a resolution of 100 millivolts for pins 0, 6, 9,

11, 12, 13, and 14).
 VOLTAGE_OFF – To turn output off (disconnect-high impedance ≥ 500KΩ).
 SHORT_TO_GROUND – Short pin to ground (limited to 300mA on pin 15 only).

7.2.11.3 Voltage Values – See Figure 21

Definition Value
Programming Voltage 0x00001388 (5000 mV) to

0x00004E20 (20000 mV)
SHORT_TO_GROUND 0xFFFFFFFE
VOLTAGE_OFF 0xFFFFFFFF

FIGURE 21—VOLTAGE VALUES

7.2.11.4 Return Values – See Figure 22

Definition Description
STATUS_NOERROR Function call successful.
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device.

ERR_NOT_SUPPORTED Function not supported.
ERR_INVALID_DEVICE_ID Device ID invalid

ERR_FAILED Undefined error, use
PassThruGetLastError for text
description.

ERR_PIN_INVALID Invalid pin number, pin number already
in use, or voltage already applied to a
different pin.

FIGURE 22—RETURN VALUES

SAE J2534-1 Revised DEC2004

- 36 -

7.2.12 PASSTHRUREADVERSION

This function returns the version strings associated with the DLL. If the function is successful, a value of
STATUS_NOERROR is returned. A buffer of at least eighty (80) characters must be allocated for each
pointer by the application.

This function can be called only after calling PassThruOpen.

7.2.12.1 C / C++ Prototype

extern “C” long WINAPI PassThruReadVersion
(
 unsigned long DeviceID
 char *pFirmwareVersion,
 char *pDllVersion,
 char *pApiVersion
)

7.2.12.2 Parameters

DeviceID Device ID returned from PassThruOpen

pFirmwareVersion Pointer to Firmware version string. This string is determined by the interface vendor

that supplies the device.

pDllVersion Pointer to DLL version string. This string is determined by the interface vendor that

supplies the DLL.

pApiVersion Pointer to API version string in YY. MM format. This string corresponds to the date

of the approved document (may not be equivalent to SAE publication date).

 February 2002 Final = “02.02”

November 2004 Final (this version) = “04.04”

SAE J2534-1 Revised DEC2004

- 37 -

7.2.12.3 Return Values – See Figure 23

Definition Description
STATUS_NOERROR Function call successful
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_FAILED Undefined error, use
PassThruGetLastError for text
description

ERR_INVALID_DEVICE_ID Device ID invalid
ERR_NULL_PARAMETER NULL pointer supplied where a valid

pointer is required

FIGURE 23—RETURN VALUES

7.2.13 PASSTHRUGETLASTERROR

This function returns the text string description for an error detected during the last function call (except
PassThruGetLastError). The error string must be retrieved before calling any other function. The buffer
pointed to by pErrorDescription is allocated by the application and must be at least eighty (80) characters.

This function can be called without first calling PassThruConnect or PassThruOpen. The last error
returned is not specific to any particular Channel ID or Device ID and is related to the last function call. It
would be expected that the application would call this function immediately after a function fails. This
function is mainly for application developers.

7.2.13.1 C / C++ Prototype

extern “C” long WINAPI PassThruGetLastError
(
 char *pErrorDescription
)

7.2.13.2 Parameters

pErrorDescription Pointer to error description string.

7.2.13.3 Return Values – See Figure 24

Definition Description
STATUS_NOERROR Function call successful
ERR_NULL_PARAMETER NULL pointer supplied where a valid

pointer is required

FIGURE 24—RETURN VALUES

wang
高亮

SAE J2534-1 Revised DEC2004

- 38 -

7.2.14 PASSTHRUIOCTL

This function is used to read and write all the protocol hardware and software configuration parameters.
If the function is successful, a value of STATUS_NOERROR is returned. The structures pointed to by
pInput and pOutput are determined by the IoctlID. See section on IOCTL structures for details.

PassThruOpen must be called prior to any Ioctl call. Some Ioctl functions do not require a ChannelID and
therefore do not require that PassThruConnect be called prior to Ioctl. In this case, the DeviceID must be
passed instead.

7.2.14.1 C / C++ Prototype

extern “C” long WINAPI PassThruIoctl
(
 unsigned long ChannelID,
 unsigned long IoctlID,
 void *pInput,
 void *pOutput
)

7.2.14.2 Parameters

ChannelID The channel ID assigned by the PassThruConnect function, except in designated Ioctls

where the device ID is passed instead.

IoctlID Ioctl ID (see the IOCTL Section).

pInput Pointer to input structure (see the IOCTL Section).

pOutput Pointer to output structure (see the IOCTL Section).

wang
高亮

SAE J2534-1 Revised DEC2004

- 39 -

7.2.14.3 Ioctl ID Values – See Figure 25

Definition Value
GET_CONFIG 0x01
SET_CONFIG 0x02
READ_VBATT 0x03
FIVE_BAUD_INIT 0x04
FAST_INIT 0x05
CLEAR_TX_BUFFER 0x07
CLEAR_RX_BUFFER 0x08
CLEAR_PERIODIC_MSGS 0x09
CLEAR_MSG_FILTERS 0x0A
CLEAR_FUNCT_MSG_LOOKUP_TABLE 0x0B
ADD_TO_FUNCT_MSG_LOOKUP_TABLE 0x0C
DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE 0x0D
READ_PROG_VOLTAGE 0x0E
Reserved for SAE 0x0F – 0x7FFF
Reserved for SAE J2534-2 0x8000 – 0xFFFF
Tool manufacturer specific 0x10000 – 0FFFFFFF

FIGURE 25—IOCTL ID VALUES

7.2.14.4 Return Values – See Figure 26

Definition Description
STATUS_NOERROR Function call successful
ERR_DEVICE_NOT_CONNECTED Unable to communicate with device

ERR_INVALID_CHANNEL_ID Invalid ChannelID value.

ERR_INVALID_IOCTL_ID Invalid IoctlID value.

ERR_NULL_PARAMETER NULL pointer supplied where a valid
pointer is required

ERR_NOT_SUPPORTED Invalid or unsupported parameter/value

ERR_FAILED Undefined error, use
PassThruGetLastError for text description

ERR_INVALID_MSG Invalid message structure pointed to by
plnput when using FAST_INT_Ioctl.

(Reference Section 8 Message Structure)

ERR_INVALID_DEVICE_ID Device ID invalid

ERR_INVALID_IOCTL_VALUE Invalid value for Ioctl parameter

FIGURE 26—RETURN VALUES

wang
高亮

wang
高亮

SAE J2534-1 Revised DEC2004

- 40 -

7.3 IOCTL Section

Figure 27 provides the details on the IOCTLs available through PassThruIoctl function:

 Value of IoctlID InputPtr
represents

OutputPtr
represents

Purpose

GET_CONFIG Pointer to
SCONFIG_LIST

NULL pointer To get the vehicle network configuration
of the pass-thru device

SET_CONFIG Pointer to
SCONFIG_LIST

NULL pointer To set the vehicle network configuration
of the pass-thru device

READ_VBATT NULL pointer Pointer to
unsigned long

To direct the pass-thru device to read
the voltage on pin 16 of the J1962
connector

FIVE_BAUD_INIT Pointer to
SBYTE_ARRAY

Pointer to
SBYTE_ARRAY

To direct the pass-thru device to initiate
a 5 baud initialization sequence

FAST_INIT NULL or Pointer to
PASSTHRU_MSG

NULL or Pointer to
PASSTHRU_MSG

To direct the pass-thru device to initiate
a fast initialization sequence

CLEAR_TX_BUFFER NULL pointer NULL pointer To direct the pass-thru device to clear
all messages in its transmit queue

CLEAR_RX_BUFFER NULL pointer NULL pointer To direct the pass-thru device to clear
all messages in its receive queue

CLEAR_PERIODIC_MSGS NULL pointer NULL pointer To direct the pass-thru device to clear
all periodic messages on the channel,
thus stopping all periodic message
transmission

CLEAR_MSG_FILTERS NULL pointer NULL pointer To direct the pass-thru device to clear
all message filters on the channel

CLEAR_FUNCT_
MSG_LOOKUP_TABLE

NULL pointer NULL pointer To direct the pass-thru device to clear
the Functional Message Look-up Table

ADD_TO_FUNCT_
MSG_LOOKUP_TABLE

Pointer to
SBYTE_ARRAY

NULL pointer To direct the pass-thru device to add a
functional address to the Functional
Message Look-up Table

DELETE_FROM_FUNCT_
MSG_LOOKUP_TABLE

Pointer to
SBYTE_ARRAY

NULL pointer To direct the pass-thru device to delete
a functional address from the
Functional Message Look-up Table

READ_PROG_VOLTAGE

NULL pointer Pointer to unsigned
long

To direct the pass-thru device to read
the feedback of the programmable
voltage set by
PassThruSetProgrammingVoltage

FIGURE 27—IOCTL DETAILS

SAE J2534-1 Revised DEC2004

- 41 -

7.3.1 GET_CONFIG

The IoctlID value of GET_CONFIG is used to obtain the vehicle network configuration of the pass-thru
device. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 28. When the function is successfully completed, the corresponding parameter
value(s) indicated in Figure 30 will be placed in each Value.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define GET_CONFIG.
InputPtr Points to the structure SCONFIG_LIST, which is defined as follows:

typedef struct
{
 unsigned long NumOfParams; /* number of SCONFIG elements */
 SCONFIG *ConfigPtr; /* array of SCONFIG */
} SCONFIG_LIST

where:
NumOfParms is an INPUT, which contains the number of SCONFIG elements in the array

pointed to by ConfigPtr.
ConfigPtr is a pointer to an array of SCONFIG structures.

The structure SCONFIG is defined as follows:
typedef struct
{
 unsigned long Parameter; /* name of parameter */
 unsigned long Value; /* value of the parameter */
} SCONFIG

where:
Parameter is an INPUT that represents the parameter to be obtained (See Figure 30 for a list

of valid parameters).
Value is an OUTPUT that represents the value of that parameter (See Figure 30 for a list of

valid values).
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 28—GET_CONFIG DETAIL

SAE J2534-1 Revised DEC2004

- 42 -

7.3.2 SET_CONFIG

The IoctlID value of SET_CONFIG is used to set the vehicle network configuration of the pass-thru
device. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 29. When the function is successfully completed the corresponding parameter(s) and
value(s) indicated in Figure 30 will be in effect.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define SET_CONFIG.
InputPtr Points to the structure SCONFIG_LIST, which is defined as follows:

typedef struct
{
 unsigned long NumOfParams; /* number of SCONFIG elements */
 SCONFIG *ConfigPtr; /* array of SCONFIG */
} SCONFIG_LIST

where:
NumOfParms is an INPUT, which contains the number of SCONFIG elements in the array

pointed to by ConfigPtr.
ConfigPtr is a pointer to an array of SCONFIG structures.

The structure SCONFIG is defined as follows:
typedef struct
{
 unsigned long Parameter; /* name of parameter */
 unsigned long Value; /* value of the parameter */
} SCONFIG

where:
Parameter is an INPUT that represents the parameter to be set (See Figure 30 for a list of

valid parameters).
Value is an INPUT that represents the value of that parameter (See Figure 30 for a list of valid

values).
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 29—SET_CONFIG DETAILS

SAE J2534-1 Revised DEC2004

- 43 -

Parameter ID Value Valid values for

Parameter
Default
Value

(decimal)

Description

DATA_RATE 0x01 5-500000 protocol
specific

Represents the desired baud rate.

An ERR_INVALID_IOCTL_VALUE will be
returned if the desired baud rate cannot
be achieved within the tolerance specified
in Section 6.5. The interface will remain
at the previous baud rate.

Unused 0x02 Reserved for SAE
LOOPBACK 0x03 0 (OFF)

1 (ON)
0 0 = Don’t echo transmitted messages in

the receive queue.
1 = Echo transmitted messages, including
periodic messages, in the receive queue.
Loopback messages must only be sent
after successful transmission of a
message. Loopback frames are not
subject to message filtering.

NODE_ADDRESS 0x04 0x00-0xFF N/A For a protocol ID of J1850PWM, this sets
the node address in the physical layer of
the vehicle network.

NETWORK_LINE 0x05 0 (BUS_NORMAL)
1 (BUS_PLUS)
2 (BUS_MINUS)

0 For a protocol ID of J1850PWM, this sets
the network line(s) that are active during
communication (for cases where the
physical layer allows this).

P1_MIN
(not used by interface)

0x06 N/A N/A

For protocol ID of ISO 9141 or ISO 14230,
this sets the minimum inter-byte time for
ECU responses. Application shall not get
or set this value. The interface will not
check for P1_MIN violations. Interface
must be capable of handling P1_MIN = 0.

P1_MAX 0x07 0x1-0xFFFF
(.5 ms per bit)

40
(20 ms)

For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum inter-byte time for
ECU responses.

P2_MIN
(not used by interface)

0x08 N/A N/A For protocol ID of ISO 9141 or ISO 14230,
this sets the minimum time between tester
request and ECU responses or two ECU
responses Application shall not get or set
this value. The interface will not check for
P2_MIN violations. After the request, the
interface shall be capable of handling an
immediate response (P2_MIN = 0). For
subsequent responses, a byte received
after P1_MAX shall be considered as the
start of the subsequent response.

P2_MAX
(not used by interface)

0x09 N/A N/A For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum time between
tester request and ECU responses or two
ECU responses. Application shall not get
or set this value. The interface will not
check for P2_MAX violations. The
interface will accept all responses up to
P3_MIN.

SAE J2534-1 Revised DEC2004

- 44 -

Parameter ID Value Valid values for
Parameter

Default
Value

(decimal)

Description

P3_MIN 0x0A 0x0-0xFFFF
(.5 ms per bit)

110
(55 ms)

For protocol ID of ISO 9141 or ISO 14230,
this sets the minimum time between end
of ECU response and start of new tester
request.

P3_MAX
(not used by interface)

0x0B N/A N/A For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum time between end
of ECU response and start of new tester
request. Application shall not get or set
this value. Interface allows transmission of
a request any time after P3_MIN.

P4_MIN 0x0C 0x0-0xFFFF
(.5 ms per bit)

10
(5 ms)

For protocol ID of ISO 9141 or ISO 14230,
this sets the minimum inter-byte time for a
tester request.

P4_MAX
(not used by interface)

0x0D N/A N/A For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum inter-byte time for
a tester request. Application shall not get
or set this value. The interface shall
transmit at P4_MIN.

W0 0x19 0x0-0xFFFF
(1 ms per bit)

300 For protocol ID of ISO 9141, this sets the
minimum bus idle time before the tester
starts to transmit the address byte.

W1 0x0E 0x0-0xFFFF
(1 ms per bit)

300 For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum time from the end
of the address byte to the start of the
synchronization pattern.

W2 0x0F 0x0-0xFFFF
(1 ms per bit)

20 For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum time from the end
of the synchronization pattern to the start
of key byte 1.

W3 0x10 0x0-0xFFFF
(1 ms per bit)

20 For protocol ID of ISO 9141 or ISO 14230,
this sets the maximum time between key
byte 1 and key byte 2.

W4 0x11 0x0-0xFFFF
(1 ms per bit)

50 For protocol ID of ISO 9141 or ISO 14230,
this sets the minimum time between key
byte 2 and its inversion from the tester.

W5 0x12 0x0-0xFFFF
(1 ms per bit)

300 For protocol ID of ISO 14230, this sets the
minimum bus idle time before the tester
starts to transmit the address byte.

TIDLE 0x13 0x0-0xFFFF
(1 ms per bit)

300 For protocol ID of ISO 9141 or ISO 14230,
this sets the minimum amount of bus idle
time that is needed before a fast
initialization sequence will begin.

TINIL 0x14 0x0-0xFFFF
(1 ms per bit)

25 For protocol ID of ISO 9141 or ISO 14230,
this sets the duration for the low pulse in
fast initialization.

TWUP 0x15 0x0-0xFFFF
(1 ms per bit)

50 For protocol ID of ISO 9141 or ISO 14230,
this sets the duration of the wake-up pulse
in fast initialization.

PARITY 0x16 0 (NO_PARITY)
1 (ODD_PARITY)
2 (EVEN_PARITY)

0 For a protocol ID of ISO 9141 or ISO
14230 only.

BIT_SAMPLE_POINT 0x17 0-100
(1% per bit)

80 For a protocol ID of CAN, this sets the
desired bit sample point as a percentage
of the bit time.

SYNC_JUMP_WIDTH 0x18 0-100
(1% per bit)

15 For a protocol ID of CAN, this sets the
desired synchronization jump width as a
percentage of the bit time.

SAE J2534-1 Revised DEC2004

- 45 -

Parameter ID Value Valid values for
Parameter

Default
Value

(decimal)

Description

T1_MAX 0x1A 0x0-0xFFFF
(1 ms per bit)

20 For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum
inter-frame response delay.

T2_MAX 0x1B 0x0-0xFFFF
(1 ms per bit)

100 For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum
inter-frame request delay.

T3_MAX 0x24 0x0-0xFFFF
(1 ms per bit)

50 For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum
response delay from the ECU after
processing a valid request message from
the tester.

T4_MAX 0x1C 0x0-0xFFFF
(1 ms per bit)

20 For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum
inter-message response delay.

T5_MAX 0x1D 0x0-0xFFFF
(1 ms per bit)

100 For protocol ID of SCI_A_ENGINE,
SCI_A_TRANS, SCI_B_ENGINE or
SCI_B_TRANS, this sets the maximum
inter-message request delay.

ISO15765_BS 0x1E 0x0-0xFF
(see ISO 15765-2)

0 For protocol ID of ISO 15765, this sets the
block size the interface should report to
the vehicle for receiving segmented
transfers.

ISO15765_STMIN 0x1F 0x0-0xFF
(see ISO 15765-2)

0 For protocol ID of ISO 15765, this sets the
separation time the interface should report
to the vehicle for receiving segmented
transfers.

BS_TX 0x22 0x0-0xFF, 0xFFFF
(see ISO 15765-2)

0xFFFF For protocol ID of ISO 15765, this sets the
block size the interface should use to
transmit segmented messages to the
vehicle. The flow control value reported by
the vehicle should be ignored. If value is
0xFFFF, use the value reported by the
vehicle.

STMIN_TX 0x23 0x0-0xFF, 0xFFFF
(see ISO 15765-2)

0xFFFF For protocol ID of ISO 15765, this sets the
separation time the interface should use
to transmit segmented messages to the
vehicle. The flow control value reported by
the vehicle should be ignored. If value is
0xFFFF, use the value reported by the
vehicle.

DATA_BITS 0x20 0 (8 data bits)
1 (7 data bits)

0 For protocol ID of ISO 9141 or ISO 14230
only.

FIVE_BAUD_MOD 0x21 0-Initialization as
defined in ISO
9141-2 and ISO
14230-4
1-ISO 9141
initialization followed
by interface
sending inverted
Key Byte 2
2- ISO 9141
initialization
followed by ECU
sending inverted
address
3- Initialization as
defined in ISO 9141

0 For a protocol ID of ISO 9141 or ISO
14230 only.

Initialization for ISO 9141-2 and ISO
14230 include the initialization sequence
as defined in ISO 9141 plus inverted key
byte #2 sent from the tester to the ECU
and inverted address sent from the ECU
to the tester.

This parameter allows either ISO 9141
initialization sequence, ISO 9141-2 / ISO
14230 initialization sequence, or hybrid
versions which include only one of the
extra bytes defined for ISO 9141-2 and
ISO 14230.

SAE J2534-1 Revised DEC2004

- 46 -

Parameter ID Value Valid values for
Parameter

Default
Value

(decimal)

Description

ISO15765_WFT_MAX 0x25 0x0-0xff 0 For protocol ID ISO 15765, the number of
WAIT flow control frames allowed
(N_WFTmax) during a multi-segment
transfer.

Reserved 0x26- 0x7FFF Reserved for SAE
Reserved 0x8000 –

0xFFFF
 Reserved for SAE J2534-2

Tool manufacturer
specific

0x10000 –
0xFFFFFFFF

Manufacturer
Specific

 Manufacturer Specific

FIGURE 30—IOCTL GET_CONFIG / SET_CONFIG PARAMETER DETAILS

7.3.3 READ_VBATT

The IoctlID value of READ_VBATT is used to obtain the voltage measured on pin 16 of the SAE J1962
connector from the pass-thru device. The calling application is responsible for allocating and initializing
the associated parameters described in Figure 31. When the function is successfully completed, battery
voltage will be placed in the variable pointed to by OutputPtr. The units will be in milli-volts and will be
rounded to the nearest tenth of a volt.

Parameter Description
ChannelID Device ID assigned by DLL during PassThruOpen
IoctlID Is set to the define READ_VBATT.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a pointer to an unsigned long.

FIGURE 31—READ_VBATT DETAILS

7.3.4 READ_PROG_VOLTAGE

The IoctlID value of READ_PROG_VOLTAGE is used to obtain the programming voltage of the pass-thru
device. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 32. When the function is successfully completed, programming voltage will be placed
in the variable pointed to by OutputPtr. The units will be in milli-volts and will be rounded to the nearest
tenth of a volt.

Parameter Description
ChannelID Device ID assigned by DLL during PassThruOpen
IoctlID Is set to the define READ_PROG_VOLTAGE.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a pointer to an unsigned long.

FIGURE 32—READ_PROG_VOLTAGE DETAILS

SAE J2534-1 Revised DEC2004

- 47 -

7.3.5 FIVE_BAUD_INIT

The IoctlID value of FIVE_BAUD_INIT is used to initiate a five-baud initialization sequence from the pass-
thru device. The ISO 9141 five baud initialization sequence includes the five baud address sent from the
tester to the ECU, followed by the synchronization byte and two key bytes sent from the ECU to the
tester. The ISO 9141-2 and ISO 14230 five baud initialization includes the ISO 9141 initialization
sequence, but adds the inverted key byte 2 value sent from the tester to the ECU, and the inverted
initialization address sent from the ECU to the tester. The FIVE_BAUD_MOD parameter in SET_CONFIG
allows the application to selectively include or exclude the two additional bytes defined in the ISO 14230
initialization sequence.

The calling application is responsible for allocating and initializing the associated parameters described in
Figure 33. When the function is successfully completed, the key words will be placed in structure pointed
to by OutputPtr. It should be noted that this only applies to Protocol ID of ISO9141 or ISO14230.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define FIVE_BAUD_INIT.
InputPtr Points to the structure SBYTE_ARRAY, which is defined as follows:

Typedef struct
{
 unsigned long NumOfBytes; /* number of bytes in the array */
 unsigned char *BytePtr; /* array of bytes */
} SBYTE_ARRAY

where:
NumOfBytes is an INPUT that must be set to “1” and indicates the number of bytes in the

array BytePtr.
BytePtr[0] is an INPUT that contains the target address.
The remaining elements in BytePtr are not used.

OutputPtr Points to the structure SBYTE_ARRAY defined above

where:
NumOfBytes is an INPUT which indicates the maximum size of the array BytePtr and an
OUTPUT which indicates the number of bytes in the array BytePtr. Must
be 2 or less.
BytePtr[0] is an OUTPUT that contains key word 1 from the ECU.
BytePtr[1] is an OUTPUT that contains key word 2 from the ECU.
The remaining elements in BytesPtr are not used.

FIGURE 33—FIVE_BAUD_INIT DETAILS

7.3.6 FAST_INIT

The IoctlID value of FAST_INIT is used to initiate a fast initialization sequence from the pass-thru device.
The calling application is responsible for allocating and initializing the associated parameters described in
Figure 34. When the function is successfully completed, the response message will be placed in structure
pointed to by OutputPtr. It should be noted that this only applies to Protocol ID of ISO9141 or ISO14230.
In case of successful initialization the OutputPtr will contain valid data.

wang
高亮

SAE J2534-1 Revised DEC2004

- 48 -

For the ISO9141 Protocol, no verification of message format will be applied.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define FAST_INIT.
InputPtr Points to the structure PASSTHRU_MSG (see the message definition section of this

document) which the pass-thru device will send. This can be a Start Communication Request
Message as defined by ISO 14230, or any other ISO 9141 or ISO 14230 message specified
by the application. If NULL, no message is transmitted on the bus as part of the fast init
sequence

OutputPtr Points to the structure PASSTHRU_MSG (see the message definition section of this
document) which will hold the response to the Start Communication Request Message. If a
response is not received in the time allowed by ISO14230 the Fast Initialization is deemed to
have failed and the contents of this structure will be indeterminate. If NULL, no response is
expected.

FIGURE 34—FAST_INIT DETAILS

7.3.7 CLEAR_TX_BUFFER

The IoctlID value of CLEAR_TX_BUFFER is used to direct the pass-thru device to clear its transmit
queue. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 35. When the function is successfully completed, the transmit queue will have been
cleared.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define CLEAR_TX_BUFFER.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 35—CLEAR_TX_BUFFER DETAILS

7.3.8 CLEAR_RX_BUFFER

The IoctlID value of CLEAR_RX_BUFFER is used to direct the pass-thru device to clear its receive
queue. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 36. When the function is successfully completed, the receive queue will have been
cleared.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define CLEAR_RX_BUFFER.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 36—CLEAR_RX_BUFFER DETAILS

SAE J2534-1 Revised DEC2004

- 49 -

7.3.9 CLEAR_PERIODIC_MSGS

The IoctlID value of CLEAR_PERIODIC_MSGS is used to direct the pass-thru device to clear its periodic
messages. The calling application is responsible for allocating and initializing the associated parameters
described in Figure 37. When the function is successfully completed, the list will have been cleared and
all periodic messages will have stopped transmitting.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define CLEAR_PERIODIC_MSGS.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 37—CLEAR_PERIODIC_MSGS DETAILS

7.3.10 CLEAR_MSG_FILTERS

The IoctlID value of CLEAR_MSG_FILTERS is used to direct the pass-thru device to clear its message
filters on the specified channel. The calling application is responsible for allocating and initializing the
associated parameters described in Figure 38. When the function is successfully completed, there will
be no filters on the channel (the default state after a PassThruConnect). No more messages shall be
queued until a PASS_FILTER or FLOW_CONTROL_FILTER is added.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define CLEAR_MSG_FILTERS.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 38—CLEAR_MSG_FILTERS DETAILS

7.3.11 CLEAR_FUNCT_MSG_LOOKUP_TABLE

The IoctlID value of CLEAR_FUNCT_MSG_LOOKUP_TABLE is used to direct the pass-thru device to
clear its functional message look-up table. The calling application is responsible for allocating and
initializing the associated parameters described in Figure 39. When the function is successfully
completed, the table will have been cleared. It should be noted that this only applies to Protocol ID of
SAE J1850PWM.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define CLEAR_FUNCT_MSG_LOOKUP_TABLE.
InputPtr Is a NULL pointer, as this parameter is not used.
OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 39—CLEAR_FUNCT_MSG_LOOKUP_TABLE DETAILS

SAE J2534-1 Revised DEC2004

- 50 -

7.3.12 ADD_TO_FUNCT_MSG_LOOKUP_TABLE

The IoctlID value of ADD_TO_FUNCT_MSG_LOOKUP_TABLE is used to add functional address(es) to
the functional message look-up table in the physical layer of the vehicle network on the pass-thru device.
The calling application is responsible for allocating and initializing the associated parameters described in
Figure 40. When the function is successfully completed, the look-up table will have been altered. It
should be noted that this only applies to Protocol ID of SAE J1850PWM.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define ADD_TO_FUNCT_MSG_LOOKUP_TABLE.
InputPtr Points to the structure SBYTE_ARRAY, which is defined as follows:

Typedef struct
{
 unsigned long NumOfBytes; /* number of bytes in the array */
 unsigned char *BytePtr; /* array of bytes */
} SBYTE_ARRAY

where:
NumOfBytes is an INPUT that indicates the number of bytes in the array BytePtr.
BytePtr[0] is an INPUT that contains the first functional address to be added.
.
.
.
BytePtr[n] is an INPUT that contains the nth functional address to be added.

OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 40—ADD_TO_FUNCT_MSG_LOOKUP_TABLE DETAILS

7.3.13 DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE

The IoctlID value of DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE is used to delete functional
address(es) from the functional message look-up table in the physical layer of the vehicle network on the
pass-thru device. The calling application is responsible for allocating and initializing the associated
parameters described in Figure 41. When the function is successfully completed, the look-up table will
have been altered. It should be noted that this only applies to Protocol ID of J1850PWM.

Parameter Description
ChannelID Channel ID assigned by DLL during PassThruConnect
IoctlID Is set to the define DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE.
InputPtr Points to the structure SBYTE_ARRAY, which is defined as follows:

Typedef struct
{
 unsigned long NumOfBytes; /* number of bytes in the array */
 unsigned char *BytePtr; /* array of bytes */
} SBYTE_ARRAY

where:
NumOfBytes is an INPUT that indicates the number of bytes in the array BytePtr.
BytePtr[0] is an INPUT that contains the first functional address to be deleted.
.
.
.
BytePtr[n] is an INPUT that contains the nth functional address to be deleted.

OutputPtr Is a NULL pointer, as this parameter is not used.

FIGURE 41—DELETE_FROM_FUNCT_MSG_LOOKUP_TABLE DETAILS

SAE J2534-1 Revised DEC2004

- 51 -

8. Message Structure

The following message structure will be used for all messages (Transmit, Receive, Filters, and Periodics)
and indications. The total message size (in bytes) is the DataSize, and includes header bytes, ID bytes,
and data bytes. For consistency, all interfaces should detect only the errors listed for each protocol in the
following sections when returning ERR_INVALID_MSG.

8.1 C / C++ Definition

typedef struct {
 unsigned long ProtocolID;
 unsigned long RxStatus;
 unsigned long TxFlags;
 unsigned long Timestamp;
 unsigned long DataSize;
 unsigned long ExtraDataIndex;
 unsigned char Data[4128];
} PASSTHRU_MSG;

8.2 Elements

ProtocolID Protocol type

RxStatus Receive message status – See RxStatus in “Message Flags and Status Definition”

section

TxFlags Transmit message flags – See TxFlags in “Message Flags and Status Definition”

section

Timestamp Received message timestamp (microseconds): For the START_OF_FRAME

indication, the timestamp is for the start of the first bit of the message. For all other
indications and transmit and receive messages, the timestamp is the end of the last
bit of the message. For all other error indications, the timestamp is the time the error
is detected.

DataSize Data size in bytes, including header bytes, ID bytes, message data bytes, and extra

data, if any.

ExtraDataIndex Start position of extra data in received message (for example, IFR). The extra data

bytes follow the body bytes in the Data array. The index is zero-based. When no
extra data bytes are present in the message, ExtraDataIndex shall be set equal to
DataSize. Therefore, if DataSize equals ExtraDataIndex, there are no extra data
bytes. If ExtraDataIndex=0, then all bytes in the data array are extra bytes.

Data Array of data bytes. Includes message headers, message body, and any extra data

bytes. The application must fill all fields for each PASSTHRU_MSG structure passed
to the API, except for RxStatus, Timestamp, and ExtraDataIndex. These three fields
are only valid when reading a message or indication with PassThruReadMsg.

SAE J2534-1 Revised DEC2004

- 52 -

8.3 Message Data Formats

This section describes the bytes in the Data section of the PASSTHRU_MSG structure. Figure 42 shows
the minimum and maximum transmit and receive message size for each protocol.

When using CAN or ISO 15765-4, the first 4 bytes of Data contain the CAN ID. Data [0] contains CAN ID
bits 28-24 (the three most significant bits will be zero), Data[1] contains bits 23-16, Data [2] contains bits
15-8, and Data [3] contains bits 7-0. If ISO15765_ADDR_TYPE is set in TxFlags, then the next byte
(Data[4]) will be the extended address.

Protocol Min
Tx

Max
Tx

Min
Rx

Max
Rx

Notes

CAN 4 12 4 12 4 bytes of CANID,
followed by up to 8
data bytes

ISO15765 4 4099 4 4099 4 bytes of CAN ID,
followed by up to
4095 data bytes

ISO15765
(Extended Address)

5 4100 5 4100 4 bytes of CAN ID,
1 Extended
Address byte,
followed by up to
4095 data
bytes

J1850PWM 3 10 3 11 3 header bytes
followed by up to
7data bytes. On
Rx, any number of
IFR bytes as long
as the total
message size is
less than 11 bytes.

J1850VPW 1 4128 1 4128
ISO9141 1 4128 1 4128
ISO14230 1 259 1 259 1-4 header bytes

followed by up to
255 data bytes.

ISO14230
(Manual
Checksum*)

1 260 1 260 Format not defined.
Allows for
4 header bytes,
255 data bytes and an
application-defined
checksum byte.

SCI 1 4128 1 4128

FIGURE 42—ALLOWED MESSAGE SIZES PER PROTOCOL

NOTE—Manual checksum is when the ISO9141_NO_CHECKSUM bit in the Connect Flag is set to 1.

SAE J2534-1 Revised DEC2004

- 53 -

8.4 Format Checks for Messages Passed to the API

The vendor DLL shall validate all PASSTHRU_MSG structures, and return an ERR_INVALID_MSG in the
following cases:

• DataSize violates Min Tx or Max Tx columns in Figure 42
• Source address (Data[3]) is different from the Node ID (Ioctl SET_CONFIG, Parameter

NODE_ADDRESS) on J1850PWM
• The header length field is incorrect for the number of bytes in the message on ISO14230
• The CAN_29_BIT flag of the message does not match the CAN_29_BIT flag passed to

PassThruConnect, unless the CAN_ID_BOTH bit was set on connect

The vendor DLL shall return ERR_MSG_PROTOCOL_ID when the ProtocolID field in the message does
not match the Protocol ID specified when opening the channel.

8.5 Conventions for Returning Messages from the API

When returning a message in PassThruReadMsg:

– DataSize shall tell the application how many bytes in the Data array are valid. ExtraDataIndex will be

the (non-zero) index of the last byte of the message. If ExtraDataIndex is not equal to DataSize there
are extra data bytes after the message. If loopback is on, RxStatus must be consulted to tell if the
message came via loopback.

– DataSize will be in the range shown in the Min Rx and Max Rx columns of Figure 42. If the device
receives a message from the vehicle bus that is too long or too short, the message shall be discarded
with no error.

– For received messages, ExtraDataIndex shall be equal to DataSize, except when the interface is
returning SAE J1850 PWM IFR bytes. In no case shall ExtraDataIndex be larger than DataSize.

– When receiving a message on an SAE J1850 PWM channel, the message shall have any IFR bytes
appended. In this case, ExtraDataIndex shall be the index of the first IFR byte, and DataSize shall be
the total length of the original message plus all IFR bytes. For example, if there are two IFR bytes,
DataSize will be incremented by two, and ExtraDataIndex will be DataSize - 2. When loopback is on,
the loopback message shall contain any IFR bytes.

8.6 Conventions for Retuning Indications from the API

When returning an indication in PassThruReadMsg:

– ExtraDataIndex must be zero
– DataSize shall tell the application how many bytes in the Data array are valid
– RxStatus must be consulted to determine the indication type (See Section 8.4).
– A TxDone indication (ISO 15765 only) is generated by the DLL after a SingleFrame message is sent,

or the last frame of a multi-segment transmission is sent. DataSize shall be 4 (or 5 when the message
was using Extended Addressing). Data shall contain the CAN ID (and possible Extended Address) of
the message just sent. If loopback is on, the TxDone indication shall precede the loopback message in
the receive queue.

SAE J2534-1 Revised DEC2004

- 54 -

– An RxBreak indication (SAE J2610/SCI and SAE J1850VPW only) is generated by the DLL if a break

is received.
– An RxStart indication is generated by the DLL when starting to receive a message on ISO9141 or

ISO14230, or when receiving the FirstFrame signal of a multi-segment ISO 15765 message.

8.7 Message Flag and Status Definitions

8.7.1 RXSTATUS

Definitions for RxStatus bits are shown in Figure 43. The application shall ignore any flags that do not
apply to the current channel.

Definition RxStatu

Bit(s)

Description Value

 31-24 Tool manufacturer specific Shall be set to 0
Reserved 23-16 Reserved for SAE J2534-2 Shall be set to 0
Reserved 15-9 Reserved for SAE Shall be set to 0
CAN_29BIT_ID 8 CAN ID Type for CAN and ISO

15765
0 = 11-bit Identifier
1 = 29-bit Identifier

ISO15765_ADDR_TYPE 7 ISO 15765-2 Addressing
Method

0= no extended address,
1= extended address is first
byte after the CAN ID

 6-5 Reserved for SAE Shall be set to 0
ISO15765_ PADDING_ERROR 4 For ProtocolID ISO 15765 a

CAN frame was received with
less than 8 data bytes

0 = No Error
1 = Padding Error

TX_INDICATION 3 ISO 15765 TxDone indication-
CANID and extended address,
if present, shall be included in
the message structure

0= No TxDone
1= TxDone

RX_BREAK 2 Break indication received –
SAE
J2610 and SAE J1850 VPW
only

0 = No break received
1 = Break received

START_OF_MESSAGE 1 Indicates the reception of the
first byte of an ISO9141 or
ISO14230 message or first
frame of an ISO15765 multi-
frame message

0 = Not a start of message
indication
1 = First byte or frame
received

TX_MSG_TYPE 0 Receive Indication/Transmit
Loopback

0 = received i.e. this message
was transmitted on the bus by
another node,
1 = transmitted i.e. this is the
echo of the message
transmitted by the PassThru
device

FIGURE 43—RXSTATUS BIT DEFINITIONS

SAE J2534-1 Revised DEC2004

- 55 -

8.7.2 RXSTATUS BITS FOR MESSAGE STATUS AND ERROR INDICATIONS

Valid combinations of RxStatus bits for messages and indications are shown in Figure 44: Valid RxStatus
Bit Combinations. When the DLL is returning both a TxDone indication and a Loopback message, the
TxDone indication shall be queued first. The RxStatus bits CAN_29BIT_ID and ISO15765_ADDR_TYPE
are not shown because they do not affect the message/indication type. See PassThruReadMsg for a
listing of which indications are valid for each protocol.

 RxStatus Bit(s) / Definition
 4 3 2 1 0

Status Description

ISO15765_
PADDING
_ERROR

TX_
DONE

RX_
BREAK

START_
OF_

MESSAGE

TX_
MSG_
TYPE

Normal
Message

Response was
received
successfully

0 0 0 0 0

RxStart First byte/frame of a
message received 0 0 0 1 0

RxBreak Break indication
received 0 0 1 0 0

RxPadError
A CAN frame was
received with less
than 8 bytes

1 0 0 0 0

TxDone
Request was
transmitted
successfully

0 1 0 0 1

Loopback
Message

Loopback of
message transmitted 0 0 0 0 1

FIGURE 44—VALID RX STATUS BIT COMBINATIONS

SAE J2534-1 Revised DEC2004

- 56 -

8.7.3 TXFLAGS

Definitions for TxFlags bits are shown in Figure 45. The interface shall ignore any flags that do not apply
to the current channel.

Definition TxFlags Bit(s) Description Value
 31-24 Unused Tool manufacturer specific
SCI_TX_VOLTAGE 23 SCI programming

voltage
0 = no voltage after message
transmit, 1 = apply 20V after
message transmit

SCI_MODE 22 SCI transmit mode 0 = Transmit using SCI Full
duplex mode.
1 = Transmit using SCI Half
duplex mode.

 21 – 16 Unused Reserved for SAE J2534-2 –
shall be set to 0

 15 - 10 Unused Reserved for SAE –
shall be set to 0

WAIT_P3_MIN_ONLY 9 Modified message
timing for ISO 14230-
used to decrease
programming time if
application knows only
one response will be
received

0 = Interface message timing as
specified in ISO 14230.
1 = After a response is received
for a physical request, the wait
time shall be reduced to P3_MIN.
Does not affect timing on
Responses to functional requests

CAN_29BIT_ID 8 CAN ID type for CAN
And ISO 15765

0 = 11-bit, 1 = 29-bit

ISO15765_ADDR_TYPE 7 ISO 15765-2
Addressing Method

0 = no extended address, 1 =
extended address is first byte
after the CAN ID

ISO15765_FRAME_PAD 6 ISO 15765-2 Frame
Padding

0 = no padding, 1 = pad all flow
controlled messages to a full CAN
frame using zeroes

 5-0 Unused Reserved for SAE –
shall be set to 0

FIGURE 45—TXFLAGS BIT DEFINITIONS

SAE J2534-1 Revised DEC2004

- 57 -

9. DLL Installation and Registry

9.1 Naming of Files

Each vendor will provide a different name implementation of the API DLL and a number of these
implementations could simultaneously reside on the same PC. No vendor shall name its implementation
“J2534.DLL”. All implementations shall have the string “32” suffixed to end of the name of the API DLL to
indicate 32-bit. For example, if the company name is “Vendor X” the name could be VENDRX32.DLL.
For simplicity, an API DLL shall be named in accordance with the file allocation table (FAT) file system
naming convention (which allows up to eight characters for the file name and three characters for the
extension with no spaces anywhere). Note that, given this criteria, the major name of an API DLL can be
no greater than six characters. The OEM application can determine the name of the appropriate vendor’s
DLL using the Win32 Registry mechanism described in this section.

9.2 Win32 Registry

This section describes the use of the Windows Registry for storing information about the various vendors
supplying the device drivers conforming to this recommended practice, the various devices supported by
each vendor, information about each device, etc. The Win32 registration is shown in Figure 46.

The installation program provided with the interface shall create the appropriate registry entries listed
below (including the PassThruSupport.04.04 key if not yet present). Only one key shall be created per
DLL installed. The uninstall program shall remove its device-specific registry information, but shall not
affect the remaining registry entries. The programming application shall use the Windows function
RegEnumKeyEx (or similar) to enumerate all devices.

SAE J2534-1 Revised DEC2004

- 58 -

FIGURE 46—WIN32 REGISTRY

The registry will contain both:

a. General information used by the user applications for selection of hardware, user information, etc.
b. Vendor/Device specific information that the vendor uses in the implementation of the API.

Considering that the object of this recommended practice is the need for interchangeability of
hardware from various vendors, the user application using the this API will be required to use the
registry to present to the users all the hardware devices that have been installed and display their
capabilities. The user should be allowed to select any hardware having the required capabilities, in
terms of protocols supported etc., for a particular reprogramming session.

HKEY_LOCAL_MACHINE

PassThruSupport .04.04
(Key)

Vendor1 - Device1
Vendor1 - Device2
Vendor2 - Device3
….
Vendor(n) -Device(n)

Key

Software

Vendor (String)
Name (String)
ConfigApplication (String)
FunctionLibrary (String)
CAN (DWORD)
ISO15765 (DWORD)
…..
VendorSpecificValues
…

SAE J2534-1 Revised DEC2004

- 59 -

Under the PassThruSupport.04.04 key will be a list of devices. Each device key will consist of the name
of the vendor, a hyphen (with spaces), and the name of the device. For example, "Acme Corp.-Turtle
Programmer". Under each device key the following entries (values) included in Figure 47 shall be
present:

Vendor String The full name of the vendor. Ex: "ACME Corporation"

Name String The name of the device. Ex: “ ACME CAN Device over
Ethernet”

CAN
ISO15765
J1850PWM
J1850VPW
ISO9141
ISO14230
SCI_A_ENGINE
SCI_A_TRANS
SCI_B_ENGINE
SCI_B_TRANS

DWORD For each of the supported protocols, the vendor can
indicate how many simultaneous channels the hardware
supports. The listing of a protocol here is only for the
purpose of information and will not guarantee that the
actual hardware will support the protocol, as it is
possible that the hardware configuration may have
changed.
Ex: CAN has a value of 2, J1850PWM has a value of 1,
and ISO 9141 has a value of 0.
If protocol does not exist, its value is assumed to be
zero.

ConfigApplication String The complete path of the configuration application for
this device. Every device vendor is required to provide a
configuration application where the user can set the
different parameters required for successfully using the
device, like COM port, Ethernet address etc.
Ex: “c:\ACME\ACMESERCFG.exe”
The user applications using the API will automatically
launch this application when the user needs to configure
the selected device.

FunctionLibrary String The complete path of the DLL supplied by the vendor to
communicate with this device. The user applications
using this device should automatically load the DLL
specified here and map into the J2534 API functions.
Ex: “C:\ACME\ACMESE32.dll”

<Vendor Specific
Values>

- The vendor will store all the vendor specific information
here.

FIGURE 47—WIN32 REGISTRY VALUES

9.2.1 USER APPLICATION INTERACTION WITH THE REGISTRY

The user application should use the registry to present to the user the list of devices available for use
from the application. Once the device has been selected by the user the Registry should be used to
retrieve all the information regarding the device so that the appropriate DLL can be loaded for use etc.
Figure 48 is a flow chart that shows a typical usage.

SAE J2534-1 Revised DEC2004

- 60 -

FIGURE 48—APPLICATION INTERACTION WITH REGISTRY

9.2.2 ATTACHING TO THE DLL FROM AN APPLICATION

This document requires OEM programming applications to explicitly load the appropriate DLL and resolve
references to the DLL supplied functions. This is accomplished by using the native Win32 API functions,
LoadLibrary, GetProcAddress and FreeLibrary (see the Win32 API SDK reference for the details of these
functions).

When using GetProcAddress, the application must supply the name of the function whose address is
being requested. The function names should be used with GetProcAddress in order to explicitly resolve
DLL function addresses when using GetProcAddress.

To support this method, it is required that all tool vendors compile their DLL with the following export
library definition file. This will help prevent name mangling and allow software developers to use the
process defined in this section as well as calling by ordinal for compilers/languages that may not support
that functionality.

All vendor DLLs and OEM applications shall be built with byte alignment (i.e., packing) set to one (1) byte.
All DLLs and OEM applications shall set the "file version" metadata on their .EXE/.DLL.

SAE J2534-1 Revised DEC2004

- 61 -

9.2.2.1 Export Library Definition File

;VENDOR32.DEF: Declares the module parameters.
LIBRARY “VENDOR32.DLL”
EXPORTS

PassThruOpen @1PRIVATE
PassThruClose @2PRIVATE
PassThruConnect @3 PRIVATE
PassThruDisconnect @4 PRIVATE
PassThruReadMsgs @5PRIVATE
PassThruWriteMsgs @6 PRIVATE
PassThruStartPeriodicMsg @7 PRIVATE
PassThruStopPeriodicMsg @8 PRIVATE
PassThruStartMsgFilter @9 PRIVATE
PassThruStopMsgFilter @10 PRIVATE
PassThruSetProgrammingVoltage @11 PRIVATE
PassThruReadVersion @12 PRIVATE
PassThruGetLastError @13 PRIVATE
PassThruIoctl @14 PRIVATE

10. Return Value Error Codes

Figure 49 lists the numerical equivalents and text description for the error or return codes identified in this
document.

Definition Value(s) Description
STATUS_NOERROR 0x00 Function call successful
ERR_NOT_SUPPORTED 0x01 Device cannot support requested

Functionality mandated in this
Document. Device is not fully SAE
J2534 compliant

ERR_INVALID_CHANNEL_ID 0x02 Invalid ChannelID value

ERR_INVALID_PROTOCOL_ID 0x03 Invalid ProtocolID value, unsupported
ProtocolID, or there is a resource
conflict (i.e. trying to connect to
multiple protocols that are mutually
exclusive such as J1850PWM and
J1850VPW, or CAN and SCI A, etc.)

ERR_NULL_PARAMETER 0x04 NULL pointer supplied where a valid
pointer is required

ERR_INVALID_IOCTL_VALUE 0x05 Invalid value for Ioctl parameter

ERR_INVALID_FLAGS 0x06 Invalid flag values

ERR_FAILED 0x07 Undefined error, use
PassThruGetLastError for text
description

ERR_DEVICE_NOT_CONNECTED 0x08 Device ID invalid

SAE J2534-1 Revised DEC2004

- 62 -

ERR_TIMEOUT 0x09 Timeout. PassThruReadMsg: No

message available to read or could
not read the specified number of
messages. The actual number of
messages read is placed in
<NumMsgs>

PassThruWriteMsg: Device could not
write the specified number of
messages. The actual number of
messages sent on the vehicle
network is placed in <NumMsgs>.

ERR_INVALID_MSG 0x0A Invalid message structure pointed to
by pMsg (Reference Section 8 –
Message Structure)

ERR_INVALID_TIME_INTERVAL 0x0B Invalid TimeInterval value.

ERR_EXCEEDED_LIMIT 0x0C Exceeded maximum number of
message IDs or allocated space.

ERR_INVALID_MSG_ID 0x0D Invalid MsgID value.

ERR_DEVICE_IN_USE 0x0E Device is currently open.

ERR_INVALID_IOCTL_ID 0x0F Invalid IoctlID value.

ERR_BUFFER_EMPTY 0x10 Protocol message buffer empty, no
messages available to read.

ERR_BUFFER_FULL 0x11 Protocol message buffer full. All the
messages specified may not have
been transmitted.

ERR_BUFFER_OVERFLOW 0x12 Indicates a buffer overflow occurred
and messages were lost.

ERR_PIN_INVALID 0x13 Invalid pin number, pin number
already in use, or voltage already
applied to a different pin.

ERR_CHANNEL_IN_USE 0x14 Channel number is currently
connected.

ERR_MSG_PROTOCOL_ID 0x15 Protocol type in the message does
not match the protocol associated
with the Channel ID

ERR_INVALID_FILTER_ID 0x16 Invalid Filter ID value

ERR_NO_FLOW_CONTROL 0x17 No flow control filter set or matched
(for protocolID ISO15765 only).

ERR_NOT_UNIQUE 0x18 A CAN ID in pPatternMsg or
pFlowControlMsg matches either ID
in an existing
FLOW_CONTROL_FILTER

SAE J2534-1 Revised DEC2004

- 63 -

ERR_INVALID_BAUDRATE 0x19 The desired baud rate cannot be
achieved within the tolerance
specified in Section 6.5

ERR_INVALID_DEVICE_ID 0x1A Unable to communicate with device

Reserved 0x1B-
0xFFFF

Reserved for SAE J2534-1

Reserved 0x10000-
0xFFFFFFFF

Reserved for SAE J2534-2

FIGURE 49—ERROR VALUES

11. Notes

11.1 Marginal Indicia

The change bar (l) located in the left margin is for the convenience of the user in locating areas where
technical revisions have been made to the previous issue of the report. An (R) symbol to the left of the
document title indicates a complete revision of the report.

PREPARED BY THE SAE PASS-THRU PROGRAMMING SAE J2534 TASK FORCE
OF THE SAE VEHICLE E/E SYSTEMS DIAGNOSTICS STANDARD COMMITTEE

SAE J2534-1 Revised DEC2004

- 64 -

APPENDIX A
GENERAL ISO 15765-2 FLOW CONTROL EXAMPLE

A.1 Flow Control Overview

ISO 15765-2 was designed to send blocks of up to 4095 bytes on top of the limited 8-byte payload of raw
CAN frames. If the data is small enough, it can fit in a single frame and be transmitted like a raw CAN
message with additional headers. Otherwise, the block is broken up into segments and becomes a
segmented transmission, generating CAN frames in both directions. For flexibility, the receiver of the
segments can control the rate at which the segments are sent.

Each transmission is actually part of a conversation between two nodes. There is no discovery
mechanism for conversation partners. Therefore, each desired conversation must be pre-defined on each
side before the conversation can start. Conversations are symmetric, meaning that either side can send a
block of data to the other. A conversation can only have one transfer (in one direction) in progress at a
time. One transfer must complete before the next transfer (in the same or in a different direction) can
start. The device must support multiple transfers at once, as long as each one is part of a different
conversation. Raw CAN frames are not allowed when using ISO15765-2.

A key feature of a conversation is that each side has a unique CAN ID, and each side uses their unique
CAN ID for all transmissions during the conversation. No other CAN IDs are part of the conversation.
Even though the useful data is only flowing in one direction, both sides are transmitting. One side is
sending the flow control message to pace the segments of data coming from the other side.

For example, during OBD communication, a pass-thru device and an ECU might have a conversation.
The pass-thru device will use the "Tester1" physical CAN ID ($241), and the first ECU will use the
"ECU1" physical CAN ID ($641). During a multi-segment transfer, both sides will be transmitting using
only their respective IDs. It does not matter if the data is being sent by the ECU or by the Tester, the IDs
remain the same.

It is important to understand the difference between OBD Requests/Responses and ISO 15765-2
transfers. The OBD Request is transmitted from the Tester to the ECU using functional addressing.
Because segmented transfer is not possible on functional addresses, the message must fit in a single
frame. The OBD Response is a message from the ECU to the Tester using physical addressing. Unlike
other protocols, the responses are not sequential. In fact, the responses can overlap, as if each ECU
were having a private conversation with the Tester. Some of the responses may fit in a single frame,
while others will require a segmented transfer from the ECU to the tester.

SAE J2534-1 Revised DEC2004

- 65 -

A.1.1 Examples Overview

This appendix contains several examples of a transmission using ISO 15765-2. These examples
assume that normal addressing is used (no extended address present), and that the CAN identifier
assignments shown in Figure A1 apply.

CAN ID CAN ID type Usage

$241 Physical request CAN ID For the transmission of a request message from the pass-thru interface
to the ECU this CAN ID Is used by the interface for:

• FirstFrame

• ConsecutiveFrame(s)
For the reception of a response message from the ECU this CAN ID is
used by the pass-thru interface for:

• FlowControl frame
$641 Response CAN ID For the reception of a request message from the pass-thru interface this

CAN ID is used by the ECU for:

• FlowControl frame
For the transmission of a response message from the ECU to the pass-
thru interface this CAN ID Is used by the ECU for:

• FirstFrame

• ConsecutiveFrame(s)

FIGURE A1—CAN IDENTIFIER ASSIGNMENT EXAMPLE

In these examples, we assume that the application has called PassThruOpen and PassThruConnect to
create an ISO 15765 channel. Before the conversation is setup, we cannot receive any messages, nor
transmit any segmented messages. After setup, we can both transmit and receive. Setting up a
conversation does not actually transmit anything. It just informs the pass-thru device which conversations
to handle.

During the following conversations, the pass-thru device will always send messages with a CAN ID of
$241, and the ECU will always send messages with $641.

SAE J2534-1 Revised DEC2004

- 66 -

A.2 Transmitting a Segmented Message

When PassThruWrite is called, the API will search the list of flow control filters, looking for a
pFlowControlMsg that matches the CAN ID (and possible extended address) of the message being sent.
Upon matching a filter, the pass-thru device will:

• Start the ISO 15765 transfer by sending a FirstFrame on the bus. The CAN ID of this segment was

specified in both the message and the matching pFlowControlMsg. In our example, this is $241.
• Wait for a FlowControl frame from the conversation partner. The CAN ID to look for is specified in the

corresponding pPatternMsg. In our example, this is $641.
• Transmit the message data in ConsecutiveFrames according to the FlowControl frame’s instructions

for BS (BlockSize) and STmin (SeparationTime minimum). Again, the pass-thru device transmits using
CAN ID specified in pFlowControlMsg. In our example, this is $241.

• Repeat the previous two steps as required.
• When finished, the pass-thru device will place a TxDone indication in the API receive queue. The data

will contain the CAN ID specified in pFlowControlMsg. In our example, this is $241.
• If loopback is on, the entire message sent will appear in the API receive queue with the

TX_MSG_TYPE bit set to 1 in RxStatus. The loopback shall not precede the TxDone indication.

A.2.1 Conversation Setup

Before any multi-segment transfer can take place, the conversation must be set up on both sides. It’s
assumed that the ECU is already setup. The application is responsible for setting up the pass-thru device.
This setup must be done once (and only once) per conversation. The setup involves a single call to
PassThruStartMsgFilter, with the following parameters:

ChannelID: Contains the value retrieved previously via the PassThruConnect function for the ISO

15765 protocol.

FilterType: Must be FLOW_CONTROL_FILTER

pMaskMsg: Pointer to a PASSTHRU_MSG that contains the receive message mask. The structure

members are set as follows (note that all bits are relevant to be filtered on for the given
example):

 ProtocolID: Must be ISO15765
 RxStatus: Don't care / not used
 TxFlags: Should be zero except for CAN_29BIT_ID and

ISO15765_ADDR_TYPE. In our examples, they will both be zero, so
the resulting TxFlags value is 00000000 hex.

 TimeStamp: Don't care / not used
 DataSize: 4 because we are filtering on CAN ID only. Could be 5 if we were using

extended addressing.
 ExtraDataIndex: Don’t care / not used
 Data: FF FF FF FF hex

SAE J2534-1 Revised DEC2004

- 67 -

pPatternMsg: Pointer to a PASSTHRU_MSG that contains the conversation partner’s ID. The

structure members are set as follows:

 ProtocolID: Must be ISO15765
 RxStatus: Don't care / not used
 TxFlags: Must be the same as pMaskMsg.
 TimeStamp: Don't care / not used
 DataSize: Must be the same as pMaskMsg.
 ExtraDataIndex: Don’t care / not used
 Data: 00 00 06 41 hex to indicate will be conversing with an ECU using

the CAN ID of $641.

pFlowControlMsg: Pointer to a PASSTHRU_MSG that contains the our ID. The structure members are

set as follows:

 ProtocolID: Must be ISO15765
 RxStatus: Don't care / not used
 TxFlags: Must be the same as pMaskMsg.
 TimeStamp: Don't care / not used
 DataSize: Must be the same as pMaskMsg.
 ExtraDataIndex: Don’t care / not used
 Data: 00 00 02 41 hex to indicate will be conversing using the Tester CAN

ID of $241.

pMsgID: Pointer to storage location for filter reference identifier (later used to delete filter).

A.2.2 Data Transmission

Once the conversation is set up, any number of messages (to the conversation partner) can be
transmitted using PassThruWriteMsg. The interface shall handle all aspects of the transfer, including
pacing (slowing) the transmission to the requirements of the receiver.

When there are multiple conversations setup, the pass-thru device will search all of the flow control filters
for a matching pFlowControlMsg. If there is no match, the message cannot be sent because the pass-
thru device doesn’t know which partner will be pacing the conversation.

When doing blocking writes, it is important to pick a timeout long enough to cover entire transfer, even if
the ECU is pacing things slowly. Otherwise PassThruWriteMsg will return with a timeout, even though the
transmission is proceeding normally.

SAE J2534-1 Revised DEC2004

- 68 -

In this example, the application calls PassThruWriteMsg with the following parameters:

ChannelID: Contains the value retrieved previously via the PassThruConnect function for the ISO

15765 protocol.

pMsg: Pointer to a PASSTHRU_MSG that contains the message we want to transmit. The

structure members are set as follows:

 ProtocolID: Must be ISO15765
 RxStatus: Don't care / not used
 TxFlags: 00000000 hex. Should be zero except for CAN_29BIT_ID and

ISO15765_ADDR_TYPE. In our examples, they will both be zero.
 TimeStamp: Don't care / not used
 DataSize: 14. The size of our example message, including the CAN ID.
 ExtraDataIndex: Don’t care / not used
 Data: 00 00 02 41 01 02 03 04 05 06 07 08 09 0a hex. The first 4 bytes are

the Tester CAN ID of $241, so the pass-thru device can find the
correct flow control filter. This is followed by 10 data bytes.

pNumMsgs: Pointer to storage location for number of messages. On input, this must be 1 because we

are only passing a single PASSTHRU_MSG. On output, this can be 0 if the message did
not go out in the time allotted, or 1 if the message transmission did complete.

Timeout 0 ms. This indicates that the application will not wait for the transfer to take place.

Instead, the application will do it’s waiting in PassThruReadMsg. An alternate strategy
would be to use a large Timeout here (large enough for the slowest ECU to receive all
the data), and a smaller timeout on PassThruReadMsg.

If the API returns ERR_NO_FLOW_CONTROL, then the flow control filter was not set up properly.

A.2.3 Verification

Because the message transmission is paced by the receiver, there is no way to know in advance how
long it will take. To help applications, the pass-thru device will generate a TxDone indication when the last
frame of the message goes out. Note that ISO 15765-2 is an unacknowledged transfer, so there are no
guarantees that the receiver actually got the message correctly. Also, if the transfer fails, no TxDone will
arrive.

SAE J2534-1 Revised DEC2004

- 69 -

After our sample message transmission, we should call PassThruReadMsg to look for the indication. The
parameters are as follows:

ChannelID: Contains the value retrieved previously via the PassThruConnect function for the ISO

15765 protocol.

pMsg: Pointer to a PASSTHRU_MSG that will contain the next message or indication in the API

receive queue. The structure does not need to be initialized. After the function call, the
following fields will be filled in by the API:

 ProtocolID: Must be ISO15765
 RxStatus: A TxDone indication is composed of: TX_MSG_TYPE = 1,

TX_DONE=1 and ISO15765_PADDING_ERROR = 0.
 TxFlags: Don’t care / not used
 TimeStamp: The time the message transmission completed.
 DataSize: 4 (or 5 with extended addressing). The TxDone indication contains

only the CAN ID of our transmission.
 ExtraDataIndex: 0. All indications have EDI of zero.
 Data: 00 00 02 41 hex. This is the Tester CAN ID of $241 to remind us which

message just finished.

pNumMsgs: Pointer to storage location for number of messages. On input, this must be 1 because we

are only expecting a single PASSTHRU_MSG. On output, this can be 0 if there were no
messages or indications in the time allotted, or 1 if the there was a message or
indication.

Timeout: 1000ms. This contains the time to wait for a message or indication. In the

PassThruWriteMsg call above we did not wait for the transfer to complete by using
blocking writes. Therefore, when we make this call to PassThruReadMsg, the transfer
will be just starting. This Timeout must be long enough for the transfer to complete, even
if the ECU requests slow pacing.

NOTE—This example assumes that the receive buffer was empty before the PassThruWriteMsg call, and
that no ECUs decided to send messages in the meantime. A real application should use
defensive programming techniques to process or discard unexpected messages.

A.3 Transmitting an Unsegmented Message

As a special case, transfers that fit in a single frame can be transmitted without setting up a conversation.
This is useful during an OBD Request, which is a functionally addressed message that is broadcast to all
ECUs. This message must be small enough to fit into a single frame (including headers) because it is not
possible to do one segmented transfer to multiple ECUs.

When using functional addressing for an OBD Request, it is important to remember that there can be no
direct reply. Instead, each ECU will send their OBD Response using physical addressing to their
conversation partner (e.g. ECU1 to Tester1, ECU2 to Tester2) as defined by ISO 15765-4. The OBD
Response may be a segmented transfer, or it may be a single frame.

SAE J2534-1 Revised DEC2004

- 70 -

A.3.1 Data Transmission

In this case, no conversation setup is necessary. The call to PassThruWriteMsg is the same as above,
except that the DataSize must be 7 bytes or less (6 bytes or less if extended addressing is turned on).
The pass-thru device will automatically insert a PCI byte before transmission.

A.3.2 Verification

Verification of the TxDone is the same as above.

A.4 Receiving a Segmented Message

Message reception is asynchronous to the application. When a FirstFrame is seen on the bus, the pass-
thru device will search the list of flow control filters, looking for a pPatternMsg message with the same
CAN ID (and possible extended address) as the FirstFrame. Upon matching a filter, the pass-thru device
will:

• Place an RxStart indication in the API receive queue. This indication has the START_OF_MESSAGE

bit set in RxFlags. The message data will contain the CAN ID of the sender. In our example, this is
$641. DataSize will be 4 bytes (5 with extended addressing), and ExtraDataIndex will be zero.

• Send a FlowControl frame to the conversation partner. The FlowStatus field shall be set to
ContinueToSend. The CAN ID of this segment comes from the filter’s corresponding
pFlowControlMsg. In our example, this CAN ID is $241. The BS (BlockSize) and STmin
(SeparationTime minimum) parameters default to zero, but can be changed with the SET_CONFIG
Ioctl.

• Wait for the conversation partner to send ConsecutiveFrames containing the actual data. The
partner’s CAN ID is specified in pPatternMsg. In our example, this CAN ID is $641.

• Repeat as necessary until the entire block has been received. When finished, the pass-thru device will
put the assembled message into the API receive queue. The CAN ID of the assembled message will
be the CAN ID of the sender. In our example, this CAN ID is $641.

If the FirstFrame does not match any flow control filters, then the message must be ignored by the
device.

A.4.1 Conversation Setup

No messages can be received until a conversation is setup. Each conversation setup will receive
messages from exactly one CAN ID (and extended address if present). Because setup is bi-directional,
the same PassThruStartMsgFilter call used for transmission will allow for message reception too.

A.4.2 Reception Notification

Segmented messages cause the API to generate an RxStart indication. This lets the application know
that the device has started message reception. It may take a while before message reception is
complete, especially if the application has increased BS and STmin.

SAE J2534-1 Revised DEC2004

- 71 -

To receive the indication, the application should call PassThruReadMsg with the following parameters:

ChannelID: Contains the value retrieved previously via the PassThruConnect function for the ISO

15765 protocol.

pMsg: Pointer to a PASSTHRU_MSG that will contain the next message or indication in the API

receive queue. The structure does not need to be initialized. After the function call, the
following fields will be filled in by the API:

 ProtocolID: Must be ISO15765
 RxStatus: An RxStart indication is composed of: START_OF_MESSAGE = 1.
 TxFlags: Don’t care / not used
 TimeStamp: The time the message transmission started.
 DataSize: 4 (or 5 with extended addressing). The RxStart indication contains only

the CAN ID of the sender.
 ExtraDataIndex: 0. All indications have EDI of zero.
 Data: 00 00 06 41 hex. This is the ECU CAN ID of $641 to tell us they have

started sending us a message.

pNumMsgs: Pointer to storage location for number of messages. On input, this must be 1 because we

are only expecting a single PASSTHRU_MSG. On output, this can be 0 if there were no
messages or indications in the time allotted, or 1 if the there was a message or
indication.

Timeout: 1000ms. This contains the time to wait for a message or indication

NOTE—This example assumes that the receive buffer was empty before the PassThruReadMsg call, and
that no ECUs decided to send messages in the meantime. A real application should use
defensive programming techniques to process or discard unexpected messages.

A.4.3 Data Reception

Once the transfer is complete, the entire message can be read like on any other protocol. Usually,
applications will call PassThruReadMsg again immediately after getting an RxStart indication. Application
writers should not assume that the complete message will always follow the RxStart indication. If multiple
conversations are setup, indications and messages from other conversations can be received in between
the RxStart indication and the actual message. The parameters for PassThruReadMsg are exactly the
same as in the previous section. The only difference is that the DataSize will be larger and
ExtraDataIndex will be non-zero.

SAE J2534-1 Revised DEC2004

- 72 -

A.5 Receiving an Unsegmented Message

No messages can be received until a conversation is setup. Each conversation setup will receive
messages from exactly one CAN ID (and extended address if present). Because setup is bi-directional,
the same PassThruStartMsgFilter call used for transmission will allow for message reception.

When a SingleFrame is seen on the bus, the pass-thru device will search the list of flow control filters,
looking for a pPatternMsg message with the same CAN ID (and possible extended address) as the
SingleFrame. Upon matching a filter, the pass-thru device will strip the PCI byte and queue the packet for
reception. If the SingleFrame does not match a flow control filter, it must be discarded.

The only difference between the previous cases is that single-frame messages do not generate an
RxStart indication.

SAE J2534-1 Revised DEC2004

Rationale

The U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) have
been working with vehicle manufacturers to provide the aftermarket with increased capability to service
emission-related ECU’s for all vehicles with a minimal investment in hardware needed to communicate
with the vehicles. Both agencies have issued regulations that will require standardized programming
tools to be used for all vehicle manufacturers. The Society of Automotive Engineers (SAE) developed
this Recommended Practice to satisfy the intent of the U.S. EPA and the California ARB.

The original SAE J2534 document published in February, 2002 was developed before vehicle
manufacturers had created reprogramming applications using this capability and before interface
manufacturers had developed hardware to be used for this capability. As this work progressed at both
vehicle and interface manufacturers, additional needed functionality and areas subject to different
interpretations were identified. This major revision includes all known changes and clarifications, and
because of the extensive modifications required, this document is not always backwards compatible with
the previous version of the document.

Relationship of SAE Standard to ISO Standard

Not applicable.

Application

This SAE Recommended Practice provides the framework to allow reprogramming software applications
from all vehicle manufacturers the flexibility to work with multiple vehicle data link interface tools from
multiple tool suppliers. This system enables each vehicle manufacturer to control the programming
sequence for electronic control units (ECUs) in their vehicles, but allows a single set of programming
hardware and vehicle interface to be used to program modules for all vehicle manufacturers.

This document does not limit the hardware possibilities for the connection between the PC used for the
software application and the tool (e.g., RS-232, RS-485, USB, Ethernet…). Tool suppliers are free to
choose the hardware interface appropriate for their tool. The goal of this document is to ensure that
reprogramming software from any vehicle manufacturer is compatible with hardware supplied by any tool
manufacturer.

U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (ARB) "OBD
service information" regulations include requirements for reprogramming emission-related control
modules in vehicles for all manufacturers by the aftermarket repair industry. This document is intended to
conform to those regulations for 2004 and later model year vehicles.For some vehicles, this interface can
also be used to reprogram emission-related control modules in vehicles prior to the 2004 model year, and
for non-emission related control modules. For other vehicles, this usage may require additional
manufacturer specific capabilities to be added to a fully compliant interface. A second part to this
document, SAE J2534-2, is planned to include expanded capabilities that tool suppliers can optionally
include in an interface to allow programming of these additional non-mandated vehicle applications. In
addition to reprogramming capability, this interface is planned for use in OBD compliance testing as
defined in SAE J1699-3. SAE J2534-1 includes some capabilities that are not required for Pass-Thru
Programming, but which enable use of this interface for those other purposes without placing a significant
burden on the interface manufacturers.

SAE J2534-1 Revised DEC2004

Additional requirements for future model years may require revision of this document, most notably the
inclusion of SAE J1939 for some heavy-duty vehicles. This document will be reviewed for possible
revision after those regulations are finalized and requirements are better understood. Possible revisions
include SAE J1939 specific software and an alternate vehicle connector, but the basic hardware of an
SAE J2534 interface device is expected to remain unchanged.

Reference Section

SAE J1850—Class B Data Communications Network Interface

SAE J1939—Truck and Bus Control and Communications Network (Multiple Parts Apply)

SAE J1962—Diagnostic Connector

SAE J2610—DaimlerChrysler Information Report for Serial Data Communication Interface (SCI)

ISO 7637-1:1990—Road vehicles—Electrical disturbance by conduction and coupling—Part 1:
Passenger cars and light commercial vehicles with nominal 12 V supply voltage

ISO 9141:1989—Road vehicles—Diagnostic systems—Requirements for interchange of digital
information

ISO 9141-2:1994—Road vehicles—Diagnostic systems—CARB requirements for interchange of digital
information

ISO 11898:1993—Road vehicles—Interchange of digital information—Controller area network (CAN) for
high speed communication

ISO 14230-4:2000—Road vehicles—Diagnostic systems—Keyword protocol 2000—Part 4:
Requirements for emission-related systems

ISO/FDIS 15765-2—Road vehicles—Diagnostics on controller area networks (CAN)—Network layer
services

ISO/FDIS 15765-4—Road vehicles—Diagnostics on controller area networks (CAN)—Requirements for
emission-related systems

Developed by the SAE Pass-Thru Programming SAE J2534 Task Force

Sponsored by the SAE Vehicle E/E Systems Diagnostics Standard Committee

